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1102 Calculus II Chapter 11 Sections 11.8–11.11 Review

Definitions

A power series is a series of the form
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·

• this is a power series about a,
• the cn are the coefficients of the power series,
• the series may converge or diverge for each value of x.

The Taylor series of f about x = a is f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, |x− a| < R.

• The radius of convergence of the Taylor series is R. It is often found using the Ratio Test.
• The interval of convergence of the Taylor series is the interval on which it converges. The endpoints of the

interval, x = a ± R, have to be checked separately using different tests for convergence since this is where
the Ratio Test fails (comparison tests are often good ones to try).

The MacLaurin series of f is the Taylor series about x = 0: f(x) =
∞∑
n=0

f (n)(0)

n!
xn, |x| < R.

The Taylor polynomials of f about x = a are Tn(x) =
n∑

i=0

f (i)(a)

i!
(x− a)i.

The Remainder is Rn(x) = f(x)− Tn(x) =
∞∑

i=n+1

f (i)(a)

i!
(x− a)i.

Finding Power series for f(x)

We have three ways of getting power series for a function f(x).

1. If the function f(x) can be manipulated to look like
1

1− y
, then we can use the geometric series result:

1

1− y
=
∞∑
n=0

yn, |y| < 1.

The radius of convergence is found from the |y| < 1 condition.
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2. If the function f(x) can be manipulated to look like (1 + y)k, then we can use the binomial series result:

(1 + y)k =
∞∑
n=0

(
k

n

)
yn, |y| < 1. (works for all k ∈ R)

(1+y)k =
∞∑
n=0

k!

(k − n)!n!
yn, |y| < 1. (does not work for k a positive integer since series is not infinite)

The radius of convergence is found from the |y| < 1 condition.

3. If neither of the above are possible, the general Taylor series method must be used where you create the
table with the derivatives f (n)(x) and f (n)(a) and you try to find a pattern in the derivatives. The radius
of convergence is found using the Ratio Test.

Common Taylor Series

You should know the Taylor series about x = 0 for common functions (see page 743 in text):

1

1− x
=
∞∑
n=0

xn, |x| < 1 geometric series

= 1 + x+ x2 + x3 + · · ·

ex =
∞∑
n=0

xn

n!
, |x| <∞

= 1 + x+
x2

2
+
x3

6
+
x4

24
+ · · ·

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, |x| <∞

= x− x3

6
+

x5

120
− x7

5040
+ · · ·

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
, |x| <∞

= 1− x2

2
+
x4

24
− x6

720
+ · · ·

arctanx =
∞∑
n=0

(−1)nx2n+1

2n+ 1
, |x| < 1

= x− x3

3
+
x5

5
− x7

7
+ · · ·

(1 + x)k =
∞∑
n=0

(
k

n

)
yn, |y| < 1

= 1 + kx+
k(k − 1)x2

2
+
k(k − 1)(k − 2)x3

6
+
k(k − 1)(k − 2)(k − 3)x4

24
+ · · ·
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Concepts

• The Taylor polynomial Tn(x) of a power series about x = a approximates the function best near x = a.

• Manipulating functions to create new power series from the previously computed Taylor series.

– Substitution

2

1 + 3x
= 2

(
1

1− (−3x)

)
= 2

∞∑
n=0

(−3x)n, | − 3x| < 1

= 2
∞∑
n=0

(−1)n3nxn, |x| < 1

3

xe−x
3/2 = x

∞∑
n=0

(−x3/2)n

n!
, |(−x3/2)| <∞

= x

∞∑
n=0

(−1)n
x3n

2nn!
, |x| <∞

=
∞∑
n=0

(−1)n
x3n+1

2nn!
, |x| <∞

– Differentiation

d

dx
ln(3 + 2x) =

2

3 + 2x

=
2

3

(
1

1 + 2x/3

)
=

2

3

(
1

1− (−2x/3)

)
=

2

3

∞∑
n=0

(
−2x

3

)n

, | − 2x

3
| < 1

=
2

3

∞∑
n=0

(−1)n
2n

3n
xn, |x| < 3

2

ln(3 + 2x) =

∫
2

3

∞∑
n=0

(−1)n
2n

3n
xn dx, |x| < 3

2

=
2

3

∞∑
n=0

(−1)n
2n

3n

∫
xn dx, |x| < 3

2

=
2

3

∞∑
n=0

(−1)n
2n

3n

xn+1

n+ 1
+K, |x| < 3

2

ln(3) = 0 +K

ln(3 + 2x) =
2

3

∞∑
n=0

(−1)n
2n

3n

xn+1

n+ 1
+ ln 3, |x| < 3

2

• Estimation of error:

– graphically,

– if series alternates, use alternating series estimation theorem.
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Mathematica

• Plotting f(x) and Tn(x) =
n∑

i=0

ci(x− a)i when you have worked out the pattern and know cn

f[x_] = Exp[x]

a = 0

c[n_] = 1/n!

T[n_, x_] := Sum[c[i](x - a)^i, {i, 0, n}]

Plot[{f[x], T[7, x]}, {x, -10, 10}, PlotRange -> {{-5, 5}, {-3, 10}}]

• Finding the first few terms in power series of f(x) about x = a (will not give you the pattern for the power
series)

f(x) ∼ Tn(x) =
n∑

i=0

f (i)(a)

i!
(x− a)i

f[x_] = Cos[x]^4/(1 - x^2)

a = Pi

T[n_, x_] := Sum[Derivative[i][f][a]/i!(x - a)^i, {i, 0, n}]

T[3, x]

• Built-in command to find Taylor Polynomials of f about x = a to order n

f[x_] = Cos[x]^4/(1 - x^2)

Series[f[x], {x, Pi, 3}]

Series[f[x], {x, Pi, 3}] // Normal

• Built-in command to find general coefficient in power series,
f (n)(a)

n!
. This replaces what we do by hand

when we find the derivatives, which you may find useful in the future but I will want you to work this out
by hand and looking for the pattern. You can use this to check your answer, although it is often hard to
interpret the output for more complicated cases.

SeriesCoefficient[Exp[x], {x, 0, n}]

Example Find the fifth degree Taylor Polynomial approximation to f(x) = x cos(βπx) about x = 0. For β = 1.4,
plot T5(x) and f(x) for −1 < x < 1 and −1 < y < 1. Clearly label which function is which in your sketch.

Solution Since we are not looking for a pattern, it may be easier to work out the derivatives by hand outside of
a table. We can use Mathematica for that.

Clear[beta]

f[x_] = x*Cos[beta*Pi*x];

a = 0;

T[n_, x_] := Sum[Derivative[i][f][a]/i! (x - a)^i, {i, 0, n}]

T[5, x]

beta = 1.4

Plot[{f[x], T[5, x]}, {x, -1, 1}, PlotLegends -> {"f(x)", "T5(x)"}]

We find that T5(x) = x− 1

2
β2π2x3 +

1

24
β4π4x5.


