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1102 Calculus II Chapter 9 Review

Topics

• Differential equations

Solutions to differential equations are families of curves. If we have some condition that the solution must satisfy,
then we pick a curve from the family of curves.

A differential equation with initial condition is called an initial value problem.

The equilibrium solutions are constant valued solutions, y(t) = constant.

• Direction fields

A direction field is a graphical way of visualizing the solution to a differential equation. It will show the family of
curves which solve the differential equation.

Be prepared to match direction fields to differential equations, and justify your picks. In other words, be able to
construct at least parts of a direction field, and be able to interpret a direction field.

• Euler’s method

Euler’s method is a numerical method which is used to determine the solution to initial value problems,

y′ = f(x, y), y(x0) = y0.

It can be motivated graphically or analytically.

The iteration equation is typically written in the following form:

x0 and y0 are given. You might choose an h or it will be given also.
xn = xn−1 + h

yn = hf(xn−1, yn−1) + yn−1

and we let n = 1, 2, 3, . . . to get the solution. The initial point (x0, y0) and step size h are given.

What we get out is a set of points (xn, yn), which approximate the solution to the differential equation.

• Separable equations

The method of solution for separable equations:

1. put all the y’s on one side, all the x’s on the other (including differentials),

2. integrate,

3. simplify.

Note that it is important to treat constant of integration properly.

• Orthogonal trajectories

Two curves are orthogonal at a point if their derivatives are negative reciprocals of each other at that point.

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the family of curves orthogonally.

To find the orthogonal trajectories of a given family of curves, we need to do a few things:

1. Construct the differential equation the given family of curves satisfies.

2. Use the fact that orthogonal trajectories have derivatives which are negative reciprocals to determine the
differential equation the orthogonal trajectories must satisfy.

3. Solve this differential equation to get the orthogonal trajectories.
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• Exponential growth or decay from data

This is the model that develops when you assume the population grows at a rate proportional to the size of the
population, which gives us the differential equation

dy

dt
= ky

where k is the population growth constant, and y is the population at time t.

The solution to the differential equation is

y(t) = Aekt,

and use two data points to determine the two constants A and k.

We always want to use data points close to the values we wish to use the model to predict.

If we are also given an initial condition y(t0) = y0, then the solution to the initial value problem

dy

dt
= ky, y(t0) = y0

is

y(t) = y0e
k(t−t0).

We use another data point to determine k, or k may be given to us.
If k > 0, we have exponential growth.
If k < 0, we don’t have growth, we have exponential decay (used to model radioactive decay).

Half-life is the time it takes half an amount of substance to disappear.

• Other Population Growth Models

Doomsday Equation:
dy

dt
= ky1+w, y(t0) = y0, w > 0 ⇒ y(t) =

(
1

−kw(t− t0) + y−w
0

)1/w

Logistic Equation:
dy

dt
= ky

(
1− y

K

)
, y(t0) = y0, K > 0 ⇒ y(t) =

y0K

y0 + (K − P0)e−k(t−t0)

Gompertz Equation:
dy

dt
= ky ln

(
K

y

)
, y(t0) = y0, K > 0 ⇒ y(t) = K

(y0

K

)e−k(t−t0)

The Doomsday solution becomes infinite at a finite time.
K is the carrying capacity (maximum population the resources can support).

• Mathematica (not on this test)

Example:
dy

dx
= 6x2 − 3x2y, y(1) = 3.

Euler’s Method:

Clear[x, y, f, h]
x[0] = 1
y[0] = 3
h = 0.01
f[x_, y_] = 6x^2 - 3x^2y
x[n_] := x[n] = x[n - 1] + h
y[n_] := y[n] = y[n - 1] + h f[x[n - 1], y[n - 1]]
data = Table[{x[n], y[n]}, {n, 0, 200}];
TableForm[%]
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Plotting points from Euler’s Method:

dataplot = ListPlot[data, PlotStyle -> {Red, PointSize[0.02]}, AxesLabel -> {"x", "y"}]

Creating Direction Fields:

<< Graphics‘PlotField‘

field = PlotVectorField[{1, 6x^2 - 3x^2y}, {x, 0, 3}, {y, 1, 4},
AspectRatio -> 1, Frame -> True, ImageSize -> {500, Automatic}, FrameLabel -> {"x", "y"}]

Show[field, dataplot]

Example Solve the differential equation
dy

dt
= r − ay, where r and a are constants.

dy

dt
= r − ay

dy

r − ay
= dt (separate)∫

dy

r − ay
=

∫
dt (integrate)∫

dy

r − ay
= t + c1 Substitute:

u = r − ay
du = −ady

1
−a

∫
du

u
= t + c1

1
−a

ln |u|+ c2 = t + c1

−1
a

ln |r − ay| = t + c (c = c1 − c2)

This is an implicit solution to the differential equation. To get the explicit solution we need to do some algebra.

ln |r − ay| = −at− ac

|r − ay| = exp(−at− ac)
r − ay = ± exp(−ac) exp(−at)
r − ay = k exp(−at), where k = ± exp(−ac)

y =
r

a
+

k

a
exp(−at)

y =
r

a
+ Be−at, where B = k/a.

B is the constant of integration. The constants r and a were constants given in the initial problem.
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Example After four days a sample of radon-222 decayed to 50% of its original amount. How long would it take the
sample to decay to 1% of its original amount?

We don’t know the initial mass, but we can assume it is m0. We will assume this is at time t0 = 0 (t will be measured in
days). This gives us the initial point (t0,m0) = (0,m0).

If we let y(t) be the mass at any time t, then the model for radioactive decay is

y(t) = y0e
k(t−t0) (the model)

y(t) = m0e
kt (using the point (t0, y0) = (0,m0))

Now we need to determine k. After 4 days the mass is m0/2. The second point we need is (4,m0/2).

y(4) = m0/2 = m0e
4k (using the point (4,m0/2))

k =
1
4

ln
(

1
2

)
(solve for k)

y(t) = m0e
1
4 ln( 1

2 )t (the model)

The time to decay to 1% of its mass will be found by solving the following equation for t

y(t) = m0/100 = m0e
1
4 ln( 1

2 )t −→ t =
4 ln(1/100)

ln(1/2)
=

4 ln(100)
ln(2)

days.

Example Solve the initial value problem
du

dr
= (1 +

√
r) sec3 u, u(0) = π/3.

cos3 u du = (1 +
√

r) dr∫
cos3 u du =

∫
(1 +

√
r) dr∫

cos2 u cos u du = r +
2
3
r3/2 + c∫

(1− sin2 u) cos u du = r +
2
3
r3/2 + c

Substitution: w = sinu, dw = cos u du∫
(1− w2)dw = r +

2
3
r3/2 + c

w − 1
3
w3 = r +

2
3
r3/2 + c

sinu− 1
3

sin3 u = r +
2
3
r3/2 + c

Now, use the initial condition to determine c:

sin(π/3)− 1
3

sin3(π/3) = 0 +
2
3
03/2 + c
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⇒ sin(π/3) = sin 60o =
√

3
2

.

√
3

2
− 1

3

(√
3

2

)3

= c =
√

3
2
−
√

3
8

=
3
√

3
8

The (implicit) solution to the initial value problem is

sinu− 1
3

sin3 u = r +
2
3
r3/2 +

3
√

3
8

Getting an explicit solution is possible, but tricky since we have a cubic trig equation in u.

Example Find the orthogonal trajectories for the family of curves x3 − sec y = k.

We begin by constructing the differential equation the family of curves satisfies:

d

dx

[
x3 − sec y = k

]
3x2 − sec y tan y

dy

dx
= 0

dy

dx
=

3x2

sec y tan y

Now, we take negative reciprocal of the derivative to get the DE the orthogonal trajectories will satisfy:

−dx

dy
=

3x2

sec y tan y

− dx

3x2
=

1
sec y tan y

dy

−1
3

∫
x−2 dx =

∫
cos y cos y

sin y
dy

1
3
x−1 =

∫
cos2 y

sin y
dy

1
3x

=
∫

1− sin2 y

sin y
dy

1
3x

=
∫

(csc y − sin y) dy

1
3x

= ln(csc y − cot y) + cos y + c

This is an implicit expression for the orthogonal trajectories to the original family of curves.


