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Euler’s Formula (For Your Enjoyment–Will Not Be On Tests)

Using Taylor series we can get an amazing result, known as Euler’s formula, which relates exponential functions,
sines and cosines.

First, we need to introduce the complex number i, which is defined by i2 = −1. This means we can write things
like
√
−4 =

√
4
√
−1 = 2i.

Note that this means:

i0 = 1,

i1 = i,

i2 = −1,

i3 = i · i2 = −i,
i4 = i2 · i2 = 1,

i5 = i4 · i = i,

i6 = i4 · i2 = −1,

i7 = i6 · i = −i,

Here’s the awesomeness, in which we only are taking a few things on faith at this point (like What the heck is a
function of a complex number? If you want to know more, you will want to study complex analysis!):

Taylor Series for exponential:

eu =
∞∑
n=0

un

n!
. converges everywhere

Evaluate at u = ix:

eix =
∞∑
n=0

(ix)n

n!
=
∞∑
n=0

inxn

n!
. converges everywhere

Expand out the infinite sum:

eix = 1 +
ix

1!
+
i2x2

2!
+
i3x3

3!
+
i4x4

4!
+
i5x5

5!
+
i6x6

6!
+
i7x7

7!
+ · · · .

Simplify the powers of i using the results from above:

eix = 1 + i
x

1!
− x2

2!
− ix

3

3!
+
x4

4!
+ i

x5

5!
− x6

6!
− ix

7

7!
+ · · · .

Collect the terms without an i, and those with an i:

eix = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ i

(
x

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
.

Use summation notation to fold up the two infinite sums:

eix =
∞∑
n=0

(−1)nx2n

(2n)!
+ i

(
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

)
.
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Identify the sums as cosine and sine:

eix = cosx+ i sinx.

This is Euler’s Formula: eix = cosx+ i sinx

Mathematica verifies this is a valid formula.

ComplexExpand[Exp[I*x]]

What is the Value of ln(−1)?

The logarithm of a negative is not defined. . . well, that’s not really true–what is true is the logarithm of a negative
is not a real number.

Let x = π:

eix = cosx+ i sinx

eiπ = cosπ + i sin π

eiπ = −1 + i(0)

eiπ = −1

ln eiπ = ln(−1)

iπ = ln(−1)

So it looks like ln(−1) = iπ. Amazing. It is. Ask Mathematica.

Log[-1]

The formula (known as Euler’s identity) eiπ+1 = 0 is supercalifragilistic since it relates four fundamental numbers:
0, 1, e, π.

What are the Trig Angle Addition Identities?

Do you even remember those trig identities, let alone how to prove them? This is an easy way to remember them,
and even more important understand what they actually mean!

Let x = u+ v:

eix = cosx+ i sinx

ei(u+v) = cos(u+ v) + i sin(u+ v)

ei(u+v) = eiueiv

= (cosu+ i sinu)(cos v + i sin v)

= cosu cos v + i2 sinu sin v + i sinu cos v + i cosu sin v

= cosu cos v − sinu sin v + i(sinu cos v + cosu sin v)

Comparing the two expressions for ei(u+v), we see that we must have

cos(u+ v) = cosu cos v − sinu sin v

sin(u+ v) = sinu cos v + cosu sin v
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Define Sine and Cosine in Terms of Exponential

Hey, you want to replace some sines and cosines with exponentials? Here is how to do that!

eix = cosx+ i sinx

e−ix = cos(−x) + i sin(−x) = cos x− i sinx

Add the equations to get: cos x =
1

2

(
eix + e−ix

)
.

Subtract the equations to get: sinx =
1

2i

(
eix − e−ix

)
.

Hyperbolic Cosine Function

You have seen the function coshx sprinkled throughout the text. What is it?

Let x→ ix in the equation we just derived:

cosx =
1

2

(
eix + e−ix

)
cos(ix) =

1

2

(
ei(ix) + e−i(ix)

)
=

1

2

(
e−x + ex

)
= coshx

The hyperbolic cosine is the cosine with an imaginary argument, coshx = cos(ix).

You can do something similar to get the relation sinhx = −i sin(ix) =
1

2

(
ex − e−x

)
.

From this, we can see calculus results like:

d

dx
[coshx] =

d

dx

[
1

2

(
e−x + ex

)]
=

1

2

(
−e−x + ex

)
= sinhx

Notice there is no minus sign! In regular trig,
d

dx
[cosx] = − sinx.

D[Cosh[x],x]

The hyperbolic functions come up often in physics and engineering. They are based on a hyperbola rather than
a circle like our regular trig functions. There are hyperbolic identities like cosh2 x− sinh2 x = 1.
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What is ii?

This may not be the most useful result, but it is one of my favourites!

Let x = π/2 in Euler’s formula:

eix = cosx+ i sinx

eiπ/2 = cos(π/2) + i sin(π/2)

eiπ/2 = i

(eiπ/2)i = ii

ei
2π/2 = ii

e−π/2 = ii

So it looks like ii = e−π/2. Amazing. It is. Ask Mathematica.

ComplexExpand[I^I]

This means e−π/2 −
√
−1
√
−1

= 0. I think I like this better than Euler’s identity!

What is i
√
i?

This looks terrifying at first, the ith root of i, or
√
−1
√√
−1. Is it some sort of Zombie Apocalypse? But figuring

out what this simplifies to starts just like ii.

eix = cosx+ i sinx

eiπ/2 = cos(π/2) + i sin(π/2)

eiπ/2 = i

(eiπ/2)1/i =
i
√
i use

1

i
=

1

i
· i
i

=
i

i2
= −i

(eiπ/2)−i =
i
√
i

e−i
2π/2 =

i
√
i

eπ/2 =
i
√
i

ComplexExpand[I^(1/I)]

Further Reading

If you want to learn more about hyperbolic functions, check out
http://en.wikipedia.org/wiki/Hyperbolic function#Useful relations.

There is a wonderful reference to help you understand Euler’s formula in more detail if you find this interesting.
http://betterexplained.com/articles/intuitive-understanding-of-eulers-formula/

If you want to learn more about the Zombie Apocalypse, check out
http://en.wikipedia.org/wiki/Zombie#Zombie apocalypse
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