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This is a set of practice test problems for Chapter 11. This is in no way an inclusive set of problems–there can be other
types of problems on the actual test. The solutions are what I would accept on a test, but you may want to add more
detail, and explain your steps with words. Make sure to also study any homework problems, problems done in class, and
problems that are performed in the textbook.

There are sometimes more than one way to determine if a series converges or diverges. If you have an alternate solution
than the one I have here and are unsure if it is correct, come and talk to me.

Questions

1. The nth partial sum of a series
∑∞

n=1 an is sn =
n− 1
n + 1

. Find an. Find
∑

an.

2. Draw diagrams and clearly explain the Remainder Estimate for the Integral Test:

∫ ∞

n+1

f(x) dx ≤ Rn ≤
∫ ∞

n

f(x) dx.

(Make sure you include the details of the integral test itself in your answer)

3. Test the series
∞∑

n=1

1
2n − 1

for convergence or divergence using the limit comparison test.

4. Is
∞∑

n=1

(−1)n

n
absolutely convergent, conditionally convergent, or divergent? Explain.

5. Test the series
∞∑

n=1

e−nn! for convergence or divergence using the ratio test.

6. Find the exact sum of
∞∑

n=4

1
(n− 3)(n− 1)

using partial fractions.

7. If the nth partial sum of a series
∑

an is given by sn = 3− ne−n, find
∑

an.

8. Show that series
∞∑

n=1

n2

6n2 + 4
diverges.

9. Is the series
∞∑

n=1

(−1)n lnn

n
absolutely convergent, conditionally convergent, or divergent?

Solutions

1. The partial sums for the series are

sn =
n∑

i=1

ai = a1 + a2 + a3 + · · ·+ an−1 + an
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and we also have

sn−1 =
n−1∑
i=1

ai = a1 + a2 + a3 + · · ·+ an−1

Subtracting, we find an expression for an in terms of the partial sums:

an = sn − sn−1

=
n− 1
n + 1

− n− 1− 1
n− 1 + 1

=
n− 1
n + 1

− n− 2
n

=
n2 − n− n2 + 2n− n + 2

n(n + 1)

=
2

n(n + 1)∑
an = lim

n→∞
sn

= lim
n→∞

n− 1
n + 1

= lim
n→∞

1− 1
n

1 + 1
n

= 1

2. To use the remainder estimate for the integral test, the series
∑

an must be shown to converge by the integral test.

The integral test requires that we work with f(x), where f(n) = an, and on the interval [1,∞), f(x) is:
1) continuous,
2) positive,
3) decreasing.

For the series
∑∞

n=1 an to converge,
∫∞
1

f(x) dx must converge.

We approximate the sum s =
∑∞

i=1 ai by the nth partial sum:

sn =
n∑

i=1

ai

which has a remainder of

Rn = s− sn = an+1 + an+2 + · · ·

Graphically, we can see how the remainder estimate for the integral test is obtained.
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All the properties of f(x) mentioned above are very important; without them, we would not know that the sketches we
drew were an accurate reflection of the situation.

For the graph on the left: The area of all the rectangles is

an+1 + an+2 + an+3 + · · · = Rn

which is less than
∫∞

n
f(x) dx.

For the graph on the right: The area of all the rectangles is

an+1 + an+2 + an+3 + · · · = Rn

which is greater than
∫∞

n+1
f(x) dx.

Therefore, we have the remainder estimate for the integral test:

∫ ∞

n+1

f(x) dx ≤ Rn ≤
∫ ∞

n

f(x) dx.

3. Use the limit comparison test where

an =
1

2n − 1
and bn =

1
2n

The series
∑

bn is a convergent geometric series, since

∑
bn =

∑ 1
2n

=
∑ 1

2

(
1
2

)n−1

which is a geometric series with a = 1/2, r = 1/2, |r| < 1 −→ convergent.

lim
n→∞

an

bn
= lim

n→∞

2n

2n − 1
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= lim
n→∞

1
1− 1

2n

=
1

1− 0
= 1 > 0

Since the limit of the ratio an/bn is greater than zero, and the series
∑

bn converges, the series
∑

an converges by the
limit comparison test.

4. Since the series we are asked to investigate is an alternating series, we should use the alternating series test.

an =
(−1)n

n

bn = |an| =
1
n

There are two conditions which must be satisfied for a series to be convergent by the alternating series test. They are:
1) bn+1 < bn, and
2) limn→∞ bn = 0.

In this case, we have:
bn+1 = 1

n+1 < 1
n = bn so 1) is True, and

limn→∞
1
n = 0 = limn→∞ bn, so 2) is True.

Therefore,
∑

an is convergent by the alternating series test.

To determine if the series
∑

an is conditionally convergent, we need to look at the series
∑
|an| =

∑
bn =

∑
1
n . This is

a divergent p-series where p = 1.

So we have that
∑

an convergent and
∑
|an| divergent. This means that

∑
an is conditionally convergent.

5. Since there is a factorial in the series, we should try the ratio test. It can tell us if the series is absolutely convergent.

an = e−nn!

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣e−(n+1)(n + 1)!
e−nn!

∣∣∣∣
= lim

n→∞

∣∣∣∣ (n + 1)
e

∣∣∣∣
=

1
e

lim
n→∞

|n + 1|

= ∞ > 1

Therefore,
∑

an diverges by the ratio test.

6.

sn =
n∑

i=4

1
(i− 3)(i− 1)
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Partial fractions:

1
(i− 3)(i− 1)

=
A

i− 3
+

B

i− 1
split

1 = A(i− 1) + B(i− 3) clear fractions

If we take i = 1, we get

1 = B(−2) −→ B = −1
2
.

If we take i = 3, we get

1 = A(2) −→ A =
1
2
.

Therefore, we have

1
(i− 3)(i− 1)

=
1
2

(
1

i− 3
− 1

i− 1

)

Now, we can simplify the partial sum

sn =
n∑

i=4

1
(i− 3)(i− 1)

=
n∑

i=4

[1
2

(
1

i− 3

)
− 1

2

(
1

i− 1

) ]
= +

1
2

(
1 +

1
2

+
1
3

+
1
4

+ · · ·+ 1
n− 4

+
1

n− 3

)
− 1

2

(
1
3

+
1
4

+
1
5

+ · · ·+ 1
n− 3

+
1

n− 2
+

1
n− 1

)
=

1
2

(
1 +

1
2
− 1

n− 2
− 1

n− 1

)
=

3
4
− 1

2n− 4
− 1

2n− 2

∞∑
n=4

an = lim
n→∞

sn = lim
n→∞

(
3
4
− 1

2n− 4
− 1

2n− 2

)
=

3
4
.

7.
∑

an =
∞∑

i=1

an = lim
n→∞

sn = lim
n→∞

(3− ne−n) −→ 3−∞ · 0.

Since this limit is an indeterminate product, to do this limit we need to compare with the continuous case and use
L’Hospital’s Rule.

Pick f(x) = 3− xe−x, so that f(n) = an. Now find the limit of the continuous function.

lim
x→∞

f(x) = lim
x→∞

(3− xe−x)
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= 3− lim
x→∞

x

ex
−→ ∞

∞
indeterminate quotient, so use L’HR.

= 3− lim
x→∞

d
dxx
d
dxex

= 3− lim
x→∞

1
ex

= 3− 0 = 3

Since f(n) = an, we can say that
∑

an = 3.

8.

lim
n→∞

an = lim
n→∞

n2

6n2 + 4

= lim
n→∞

1
6 + 4

n2

=
1

6 + 0
=

1
6
6= 0

This diverges by the test for divergence.

9. We identify an = (−1)n lnn

n
. Since this is an alternating series, we should try the alternating series test.

We identify bn = |an| =
lnn

n
.

For the first condition of the alternating series test, bn+1 ≤ bn for all n, we need to work with the continuous function
f(x) where f(n) = bn and then show f(x) is decreasing.

f(x) =
lnx

x

f ′(x) =
x 1

x − lnx(1)
x2

=
1− lnx

x2

So we have f ′(x) < 0 if 1− lnx < 0, which is the same as x > e1. This means that for n > e, bn+1 ≤ bn.

I know e < 3, so let’s just say that we have bn+1 ≤ bn if n ≥ 3.

The second condition of the alternating series test is to show limn→∞ bn = 0.

lim
n→∞

bn = lim
n→∞

lnn

n
−→ ∞

∞
indeterminate quotient

We want to use L’Hospital’s Rule to evaluate this limit, but we have to switch to a continuous function first, since the
derivative is not defined for the discrete variable n. Pick f(x) such that f(n) = bn, and then proceed.

lim
x→∞

f(x) = lim
x→∞

lnx

x
−→ ∞

∞
indeterminate quotient
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= lim
x→∞

(
1
x

)
(1)

= lim
x→∞

1
x

= 0

Therefore, we also have lim
n→∞

bn = 0.

The series
∞∑

n=3

an converges by the alternating series test.

Since
∞∑

n=3

an converges, then
∞∑

n=1

an converges.

Now, we want to check the convergence of the series
∑

bn =
∑
|an|, to determine if the series

∑
an is absolutely or

conditionally convergent.

We can use the comparison test for this (or integral test). Here is how we construct our comparison series.

lnn > 1 if n > 3
lnn

n
>

1
n

if n > 3

So our comparison series should be
∑

cn where cn =
1
n

, which is the divergent p-series, with p = 1.

Since bn =
lnn

n
>

1
n

= cn if n > 3, and
∑

cn diverges, we have that
∑

bn must also diverge by the comparison test.

Therefore,
∑

an converges and
∑
|an| =

∑
bn diverges, so the series

∑
an is conditionally convergent.


