Instructions: You have 15 minutes, you may not use Mathematica, and you must work alone, but you can use your notes and text.

1. (20 marks) Evaluate the integral $I=\int \frac{d t}{\sqrt{t^{2}+2 t-8}}$.

Solution This looks like a trig substitution, since there is a square root in the integrand. However, it needs some modification before we can integrate.

First, complete the square:

$$
\begin{aligned}
& t^{2}+2 t=(t+1)^{2}-1 \\
& t^{2}+2 t-8=(t+1)^{2}-9
\end{aligned}
$$

The integrand becomes

$$
\begin{array}{rll}
I & =\int \frac{d t}{\sqrt{t^{2}+2 t-8}} \\
& =\int \frac{d t}{\sqrt{(t+1)^{2}-9}} \text { Substitution: } \begin{array}{l}
x=t+1 \\
d x=d t
\end{array} \\
& =\int \frac{d x}{\sqrt{x^{2}-9}}
\end{array}
$$

This is now ready for a trig substitution. The integral contains a $\sqrt{x^{2}-a^{2}}$, with $a=3$, so we should use the trig substitution:

$$
\begin{aligned}
& x=a \sec \theta=3 \sec \theta \\
& d x=3 \sec \theta \tan \theta d \theta
\end{aligned}
$$

Now, we find expressions for all the components of the integrand:

$$
\begin{aligned}
\sqrt{x^{2}-9} & =\sqrt{9 \sec ^{2} \theta-9} \\
& =\sqrt{9} \sqrt{\sec ^{2} \theta-1} \\
& =3 \sqrt{\tan ^{2} \theta} \\
& =3|\tan \theta|=3 \tan \theta
\end{aligned}
$$

And now we do the integral:

$$
\begin{aligned}
\int \frac{d x}{\sqrt{x^{2}-9}} & =\int \frac{3 \sec \theta \tan \theta d \theta}{3 \tan \theta} \\
& =\int \sec \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|+C
\end{aligned}
$$

Now we need to back substitute to get the integral in terms of t. First, construct the diagram that will help us back substitute the θ :

$$
\sec \theta=\frac{x}{3}
$$

$$
\sec \theta=\frac{x}{3}, \quad \tan \theta=\frac{\sqrt{x^{2}-9}}{3}
$$

And now we can finish the back substitution:

$$
\begin{aligned}
I & =\int \frac{d t}{\sqrt{t^{2}+2 t-8}} \\
& =\ln |\sec \theta+\tan \theta|+C \\
& =\ln \left|\frac{x}{3}+\frac{\sqrt{x^{2}-9}}{3}\right|+C \\
& =\ln \left|\frac{t+1}{3}+\frac{\sqrt{(t+1)^{2}-9}}{3}\right|+C
\end{aligned}
$$

This wasn't asked, but for what values of $t>0$ is this formula valid?
This formula will be valid for any region of t which is in the domain of the function. Therefore, $(t+1)^{2}-9 \geq 0$, or we get a square root of a negative number, which has no solution for the real numbers. This means that our formula is valid for $t \geq 2$ (since we are told that $t>0$ for this problem).

