Warning:
JavaScript is turned OFF. None of the links on this page will work until it is reactivated.
If you need help turning JavaScript On, click here.
The Concept Map you are trying to access has information related to:
SeriesSolutions, variable coefficient linear differential equation Classify the points of the differential equation, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> y= </mtext> <munderover> <sum/> <mtext> n=0 </mtext> <mtext> ∞ </mtext> </munderover> <mmultiscripts> <mtext> a </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mmultiscripts> <mrow> <mtext> (x- </mtext> <mmultiscripts> <mtext> x </mtext> <mtext> 0 </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> </mrow> <none/> <mtext> n+r </mtext> </mmultiscripts> </mrow> </math> Technique to determine coefficients in series solution (recurrence relations) and r (indicial equation), <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> y= </mtext> <munderover> <sum/> <mtext> n=0 </mtext> <mtext> ∞ </mtext> </munderover> <mmultiscripts> <mtext> a </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mmultiscripts> <mrow> <mtext> (x- </mtext> <mmultiscripts> <mtext> x </mtext> <mtext> 0 </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> </mrow> <none/> <mtext> n </mtext> </mmultiscripts> </mrow> </math> <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> y= </mtext> <munderover> <sum/> <mtext> n=0 </mtext> <mtext> ∞ </mtext> </munderover> <mmultiscripts> <mtext> a </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mmultiscripts> <mrow> <mtext> (x- </mtext> <mmultiscripts> <mtext> x </mtext> <mtext> 0 </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> </mrow> <none/> <mtext> n+r </mtext> </mmultiscripts> </mrow> </math>, Classify the points of the differential equation Irregular Singular Point, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mtext> y= </mtext> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> r </mtext> </mmultiscripts> </math> <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> y= </mtext> <munderover> <sum/> <mtext> n=0 </mtext> <mtext> ∞ </mtext> </munderover> <mmultiscripts> <mtext> a </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mmultiscripts> <mrow> <mtext> (x- </mtext> <mmultiscripts> <mtext> x </mtext> <mtext> 0 </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> </mrow> <none/> <mtext> n+r </mtext> </mmultiscripts> </mrow> </math>, Irregular Singular Point Grad school techniques: asymptotics, dominant balance, Not an Euler Equation: solution is not a Taylor series assume solution is <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> y= </mtext> <munderover> <sum/> <mtext> n=0 </mtext> <mtext> ∞ </mtext> </munderover> <mmultiscripts> <mtext> a </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mmultiscripts> <mrow> <mtext> (x- </mtext> <mmultiscripts> <mtext> x </mtext> <mtext> 0 </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> </mrow> <none/> <mtext> n+r </mtext> </mmultiscripts> </mrow> </math>, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> DE has two linearly 
independent Taylor 
series solution </mtext> </mrow> </math> assume solution is <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> y= </mtext> <munderover> <sum/> <mtext> n=0 </mtext> <mtext> ∞ </mtext> </munderover> <mmultiscripts> <mtext> a </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mmultiscripts> <mrow> <mtext> (x- </mtext> <mmultiscripts> <mtext> x </mtext> <mtext> 0 </mtext> <none/> </mmultiscripts> <mtext> ) </mtext> </mrow> <none/> <mtext> n </mtext> </mmultiscripts> </mrow> </math>, Classify the points of the differential equation Ordinary Point, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> Special Case:
Euler Equation </mtext> </mrow> </math> <math xmlns="http://www.w3.org/1998/Math/MathML"> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> 2 </mtext> </mmultiscripts> <mmultiscripts> <mtext> y </mtext> <none/> <mtext> // </mtext> </mmultiscripts> <mtext> +αx </mtext> <mmultiscripts> <mtext> y </mtext> <none/> <mtext> / </mtext> </mmultiscripts> <mtext> +βy=0 </mtext> </math>