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This file contains example problems for each of the techniques we study in differential equations. Sometimes
the method is discussed in general, and an example follows.

1 1st Order: Separable Equations

The general first order equation is:

dy

dx
= f(x, y),

M(x, y) +N(x, y)
dy

dx
= 0,

which is always possible by simply letting M(x, y) = −f(x, y) and N(x, y) = 1, although other ways are
possible.

Separable equations result if M is only a function of x, and N is only a function of y:

M(x) +N(y)
dy

dx
= 0,

M(x)dx+N(y)dy = 0,
M(x)dx = −N(y)dy,∫
M(x)dx = −

∫
N(y)dy,

and we can simply integrate both sides to get our answer.

Things to note: The distinction between dependent and independent variable is blurred. Also, we have
replaced one integral with two which can (hopefully) perform.

1.1 Example

Solve

dy

dx
=

x2

1− y2
.

Notice that the f(x, y) = g(x)/h(y); that is your clue to separability.

(1− y2)dy = x2dx,∫
(1− y2)dy =

∫
x2dx,

y − y3

3
+ C1 =

x3

3
+ C2,

x3 + y3 − 3y + c = 0.
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Is the implicit solution. Back substitute to check this result. Explicit solutions are sometimes impossible to
find; as far as I am concerned, an implicit solution is as good as an explicit one, so don’t bother trying to
convert explicit case (you should, however, say that it is an implicit solution).

2 1st Order: Integrating Factor

Consider:

dy

dt
+ p(t)y = g(t).

Multiply by the integrating factor to get:

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)g(t),

and note that the integrating factor satisfies:

d

dt
[µ(t)y] = µ(t)

dy

dt
+ y

dµ(t)
dt

which we want to = µ(t)g(t),

and comparing with what our original equation, we want to have:

dµ(t)
dt

= p(t)µ(t),

dµ(t)
µ(t)

= p(t) dt,∫
dµ(t)
µ(t)

=
∫
p(t) dt,

ln |µ(t)| =
∫
p(t)dt,

µ(t) = exp(
∫
p(t)dt).

The integrating factor is written as the exponential of the integral of p(t) (we have dropped the constants
at this stage).

The final solution is found from solving:

d

dt
[µ(t)y] = µ(t)g(t),

y =
∫
µ(s)g(s)ds|s=t + c

µ(t)
.
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We see that although for some cases the integrating factor method works well, it is certainly complicated,
and may easily have integrals which can not be evaluated. In such cases we weren’t able to find two simpler
integrals to replace the one.

NOTE: Although we have just proved an interesting general result, you should not try and memorize it. It
is easier to simply follow the procedure each time.

2.1 Example

Solve

dy

dx
=

1
x+ y2

, y(−2) = 0.

Q: Is this linear in y? A: No. Q: Is this linear in x? A: rewrite it, yes

dx

dy
= x+ y2 or

dx

dy
− x = y2

This is linear in x, so we will proceed with our integrating factor solution in terms of the dependent variable
x.

µ(y)
dx

dy
− µ(y)x = µ(y)y2, (multiply by integrating factor)

d

dy
[µ(y)x] = µ(y)

dx

dy
+
dµ

dy
x, (chain rule–compare)

dµ

dy
= −µ, (DE for integrating factor)

µ(y) = exp(−y) (integrating factor)

d

dy
[exp(−y)x] = y2 exp(−y),

exp(−y)x =
∫
y2 exp(−y)dy,

= −y2 exp(−y)− 2y exp(−y)− 2 exp(−y) + c,

x = −y2 − 2y − 2 + c exp(y),

and the initial condition is x = −2, y = 0 gives us c = 0, so we arrive at the implicit solution for y(x):

x = −y2 − 2y − 2.

You should always back substitute and check your answer.
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3 1st Order: Exact Equations

This is a rather special trick, and won’t work on most first order equations.

Theorem Let the functions M,N,My, Nx, where subscripts denote partial derivatives, be continuous in
the rectangular region R : α < x < β, γ < y < δ. Then

M(x, y) +N(x, y)
dy

dx
= 0

is an exact differential equation in R if and only if

My(x, y) = Nx(x, y),

at each point of R. That is, there exists a function ψ satisfying

ψx(x, y) = M(x, y), ψy(x, y) = N(x, y)

if and only if M and N satisfy

My(x, y) = Nx(x, y).

The solution of an exact differential equation is given implicitly by

ψ(x, y) = c.

The proof contains the method of solution of exact differential equations.

First, prove (2) implies (1). (2) tells us that:

My(x, y) = ψxy(x, y) = ψyx(x, y) = Nx(x, y)

So we have that direction easily.

Now prove that (1) implies the equations are exact. Assume we can construct the function ψ that satisfies
(2):

ψx(x, y) = M(x, y), ψy(x, y) = N(x, y)

We now integrate the first equation, holding y constant.

ψ(x, y) =
∫
M(x, y)dx+ h(y)
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The function h(y) is an arbitrary function of y, and is really our constant of integration (y is held constant
while we integrate with respect to x).

Now we show that we can always choose h(y) so that ψy(x, y) = N(x, y).

ψy(x, y) =
∂

∂y

∫
M(x, y)dx+ h′(y)

=
∫
My(x, y)dx+ h′(y)

N(x, y) =
∫
My(x, y)dx+ h′(y)

h′(y) = N(x, y)−
∫
My(x, y)dx

Despite the appearance of what seems to be a function of x on the right hand side, the right hand side is
actually only a function of y. You can prove this by taking the derivative with respect to x, and showing
that it equals zero.

The function ψ is therefore given by

ψ(x, y) =
∫
M(x, y)dx+

∫ [
N(x, y)−

∫
My(x, y)dx

]
dy.

3.1 Example

Solve the differential equation

(y cosx+ 2xey) + (sinx+ x2ey − 1)
dy

dx
= 0.

Identify M and N :

M(x, y) = y cosx+ 2xey, N(x, y) = sinx+ x2ey − 1

My(x, y) = cosx+ 2xey = Nx(x, y)

So the DE is exact. Therefore, we look for a ψ that satisfies:

ψx(x, y) = M(x, y) = y cosx+ 2xey

ψy(x, y) = N(x, y) = sinx+ x2ey − 1

Let’s integrate the second equation, to get:

ψ(x, y) =
∫
N(x, y)dy = y sinx+ x2ey − y + h(x)
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Now, we differentiate with respect to x:

ψx(x, y) = M(x, y) = y cosx+ 2xey +
dh(x)
dx

Now, we compare the two equations for M(x, y), and identify that h(x) must solve the equation:

dh(x)
dx

= 0

h(x) = 0 + C = 0

We do not include any constants of integration here, much like when we dropped the constants of integration
when we solved the differential equation for the integrating factor. The constants are all collected in the
final solution

And so the complete solution is given implicitly by:

ψ(x, y) = C → y sinx+ x2ey − y = C.

We made a choice to integrate the second equation, and you should verify that if we had instead integrated
the first equation,

ψx(x, y) = M(x, y) = y cosx+ 2xey

we would still get the same result.

4 1st Order: Exact Equations with Integrating Factors

We can use the technique of integrating factors to make an equation which is not exact, exact. This is a
method that is extremely specialized, requires you to solve a partial differential equation, and so has limited
utility. If the partial differential equation can not be solved by inspection (meaning, an educated guess will
do) then trying the integrating factor technique on an exact equation simply restates the problem in terms
of another differential equation you can’t solve.

Let’s take a look at the method.

If we have a differential equation of the form

M(x, y)dx+N(x, y)dy = 0

which is not exact, we can multiply it by an integrating factor µ(x, y):

µ(x, y)M(x, y)dx+ µ(x, y)N(x, y)dy = 0
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and we try to choose the integrating factor so our new equation is exact. For this to be exact, we require:

(µM)y = (µN)x

Mµy −Nµx + (My −Nx)µ = 0

This is the partial differential equation that we must solve in order to determine the integrating factor µ(x, y).
As you can see, it appears quite complicated!

We usually look for µ(x, y) = µ(x) or µ(x, y) = µ(y). The partial differential equation we must solve
simplifies in these cases to an ODE:

Nµx + (My −Nx)µ = 0,

or

Mµy + (My −Nx)µ = 0,

which we can write as:

dµ

dx
=
My −Nx

N
µ,

or

dµ

dy
=
My −Nx

M
µ.

Now, we can see that if

My −Nx

N
= f(x)

we should look for an integrating factor which is only a function of x, since we can, in principle, solve the
ODE for the integrating factor by using separation of variables.

Similarly, if

My −Nx

M
= f(y)

we should look for an integrating factor which is only a function of y.
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4.1 Example

Find an integrating factor for the differential equation:

(3xy + y2) + (x2 + xy)
dy

dx
= 0

You can verify that this equation is not exact. Should we look for an integrating factor of the form µ(y) or
µ(x)?

Compute:

My −Nx

M
=

(3x+ 2y)− (2x+ y)
3xy + y2

= =
x+ y

3xy + y2
6= f(y)

so we don’t have a simple µ(x, y) = µ(y) solution.

Compute:

My −Nx

N
=

(3x+ 2y)− (2x+ y)
x2 + xy

= =
x+ y

x2 + xy

=
1
x

= f(x)

so we have a simple µ(x, y) = µ(x) solution for the integrating factor!

Now, the ordinary differential equation for the integrating factor becomes:

dµ

dx
=
µ

x

µ = x

and the original differential equation can be written as:

(3x2y + xy2) + (x3 + x2y)
dy

dx
= 0

which is exact. Verify the implicit solution is given as:

x3y +
1
2
x2y2 = c.
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5 2nd Order Homogeneous Constant Coefficient

Consider:

ay′′ + by′ + cy = 0.

Let’s look for solutions of the form y = ert, where r is to be determined.

y = ert

y′ = rert

y′′ = r2ert

Substitute into the original equation:

(ar2 + br + c)ert = 0

and since ert 6= 0, we have

(ar2 + br + c) = 0

which is called the characteristic equation for the differential equation.

What does it mean? It means that if r is a root of the characteristic equation, then y = ert is a solution of
the differential equation.

The characteristic equation is quadratic, so it will have two roots, and they may be:

• real and different

• complex conjugates

• real and equal (repeated roots)

5.1 Real and Distinct Roots of Characteristic Equation

Assume the roots are r1, r2 which are real, and r1 6= r2. The two solutions are:

y1(t) = er1t y2(t) = er2t

and we can write a general solution as:

y(t) = c1y1(t) + c2y2(t) = c1e
r1t + c2e

r2t.
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5.2 Complex Conjugate Roots of Characteristic Equation

r =
−b±

√
b2 − 4ac

2a
, b2 − 4ac < 0

r1 = λ+ iµ, r2 = λ− iµ

where

λ =
−b
2a
, µ =

√
4ac− b2

2a
, i =

√
−1.

Note that λ and µ are real.

We can still use the solutions we found before:

y1(t) = er1t = e(λ+iµ)t, y2(t) = er2t = e(λ−iµ)t

Now we have to understand what a complex exponential means. For this, we turn to Euler’s Formula.
Euler’s Formula provides a way of examining complex exponentials, and is based on the Taylor expansion of
the exponential function for a real argument:

et =
∞∑

n=0

tn

n!
, −∞ < t <∞

What if we simply substituted t→ it? Then we would have:

eit =
∞∑

n=0

(it)n

n!
,

=
∞∑

n=0

(−1)nt2n

(2n)!
+ i

∞∑
n=1

(−1)2n−1t2n−1

(2n− 1)!
,

= cos t+ i sin t Euler’s Formula

Therefore, we can write:

e(λ+iµ)t = eλt(cosµt+ i sinµt)

Note that if µ = 0, we reduce to the real valued exponential:

eλt = eλt(cos 0 + i sin 0) = eλt
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The complex exponential obeys all the same laws of exponents and derivative laws as does the real exponential
function:

d

dx
ert = rert, r Complex.

e−3+6i = e−3(cos 6 + i sin 6) ≈ 0.047− 0.014i.

So, what we have now are solutions to the original differential equation for complex roots of the characteristic
equation. But our solutions are also complex, which we could work with but prefer not to. Our original
differential equation was not complex, so why should the solutions be?

How to construct real valued solutions from the complex ones Theorem 3.2.2 said that if y1 and
y2 were solutions to the differential equation, then any linear combination of y1 and y2 is also a solution.

ȳ3(t) = y1(t) + y2(t) = eλt(cosµt+ i sinµt) + eλt(cosµt− i sinµt)
= 2eλt cosµt

ȳ4(t) = y1(t)− y2(t) = eλt(cosµt+ i sinµt)− eλt(cosµt− i sinµt)
= 2ieλt sinµt

Since we are not concerned with any constant multiple of the solutions, we choose:

y3(t) = eλt cosµt
y4(t) = eλt sinµt

as the fundamental set of solutions, since

W (y3, y4)(t) = µe2λt,

which is nonzero as long as µ 6= 0, which is true for complex roots of the characteristic equation.

NOTE: y3 and y4 are just the real and imaginary parts of the the original complex solutions y1 and y2. The
real and imaginary parts of the complex solution must satisfy the original differential equation individually,
so the use of them as a fundamental set of solutions should not be surprising.

The general solution of the differential equation:

ay′′ + by′ + cy = 0,

which has roots of the characteristic equation

ar2 + br + c = 0, r = λ± µ
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is

y = c1e
λt cosµt+ c2e

λt sinµt,

where c1 and c2 are arbitrary constants.

5.3 Real Root of Multiplicity Two of Characteristic Equation

We will still have one solution to the differential equation, given by y1(t) = ert where r is the root of the
characteristic equation. We get a second solution using the method of reduction of order, which is outlined
below.

Construct a second function

y = v(t)y1(t) = v(t)e−bt/2a

and our task is to determine v(t) such that this is a solution of the original differential equation.

If it is to solve the differential equation, we should begin by substituting back into the differential equation:

y = v(t)e−bt/2a

y′ = v′(t)e−bt/2a − b

2a
v(t)e−bt/2a

y′′ = v′′(t)e−bt/2a − b

a
v′(t)e−bt/2a +

b2

4a2
v(t)e−bt/2a

Substitute back into the differential equation to obtain:

[
a

(
v′′(t)− b

a
v′(t) +

b2

4a2
v(t)

)
+ b

(
v′(t)− b

2a
v(t)

)
+ cv(t)

]
e−bt/2a = 0

The exponential is not zero, so we can cancel it. Rearranging yields:

av′′(t) + (−b+ b)v′(t) +
(
b2

4a
− b2

2a
+ c

)
v(t)

And

− b+ b = 0
b2

4a
− b2

2a
+ c = − b

2

4a
+ c

=
−1
4a
(
b2 − 4ac

)
= 0
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So to satisfy the differential equation we require that

v′′(t) = 0.

This has solution v(t) = c1t+ c2, and so

y = c1e
−bt/2a + c2te

−bt/2a.

The two solutions are y1(t) = e−bt/2a and y2 = te−bt/2a. The Wronskian is W (y1, y2)(t) = e−bt/2a, which is
never zero, and so these two solutions form a fundamental set of solutions. The linear combination above is
therefore the general solution to the differential equation.

5.4 Example

Find the solution of the initial value problem:

y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = 3

Assume a solution of the form yrt
e , then r must be a root of the characteristic equation:

r2 + 5r + 6 = (r + 2)(r + 3) = 0 −→ r1 = −2, r2 = −3

so the general solution is

y(t) = c1e
−2t + c2e

−3t

Apply the initial conditions:

y(0) = 2 → c1 + c2 = 2
y′(0) = 3 → −2c1 − 3c2 = 3

which has the solution: c1 = 9, c2 = −7. The solution to the initial value problem is therefore:

y(t) = 9e−2t − 7e−3t

5.5 Example

Find the general solution of

y′′ + y′ + y = 0.
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The characteristic equation is

r2 + r + 1 = 0

which has roots

r =
−1±

√
1− 4

2
=
−1
2
± i

√
3

2
= λ± iµ, λ = −1

2
, µ =

√
3

2

The fundamental set of solutions is given by:

y1(t) = eλt cosµt = e−t/2 cos(
√

3t/2),

y2(t) = eλt sinµt = e−t/2 sin(
√

3t/2).

The general solution is therefore given by:

y = c1e
−t/2 cos(

√
3t/2) + c2e

−t/2 sin(
√

3t/2)

6 nth Order Homogeneous Constant Coefficient

Consider the nth order linear homogeneous differential equation:

L[y] = a0y
(n) + a1y

(n−1) + · · ·+ any = 0

where a’s are constants. We expect that y = ert is a solution. Substitute and we get the characteristic
equation:

Z(r) = a0r
n + a1r

n−1 + · · ·+ an = 0

For r which satisfy the characteristic equation, we have ert as a solution.

An nth degree polynomial has n zeros, r1, r2, . . . , rn.

Z(r) = (r − r1)(r − r2) · · · (r − rn)

Some of the ri may be equal.

6.1 Real and Unequal Roots

If roots are real, and no two are equal, then we have n distinct solutions. If these functions are linearly
independent, then the general solution is

y = c1e
r1t + c2e

r2t + · · ·+ cne
rnt
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We can check linear independence of the fundamental set of solutions using the Wronskian.

6.2 Complex Roots

If the characteristic equation has complex roots, they must occur in conjugate pairs λ± iµ. We get complex
roots appearing in complex conjugate pairs since the coefficients of the characteristic equation are real. If
they are complex, complex roots need not occur in complex conjugate pairs. The real valued solutions for
these complex roots are

eλt cosµt, eλt sinµt

The general solution is made up of a linear combination of these functions.

6.3 Repeated Roots

If a root r1 has multiplicity s, then the s linearly independent functions that are solutions are

er1t, ter1t, t2er1t, . . . , ts−1er1t

This works for real or imaginary r1.

6.4 Example

Solve the differential equation y(4) − y = 0.

Assume y = ert.
Substitute into the differential equation: r4ert − ert = 0.
Characteristic equation: r4 − 1 = 0.
Difference of squares: (r2 − 1)(r2 + 1) = 0 −→ r1 = i, r2 = −i, r3 = 1, r4 = −1.
r1 and r2 are complex conjugates, with λ = 0, µ = 1.
The fundamental set of solutions is:
y1(t) = eλt cosµt = cos t, y2(t) = eλt sinµt = sin t, y3(t) = er3t = et, y4(t) = er4t = e−t.
The general solution is y(t) = c1 cos t+ c2 sin t+ c3e

t + c4e
−t.

6.5 Example

Solve the differential equation y(4) + 2y′′ + y = 0.

Assume y = ert.
Substitute into the differential equation: r4ert + 2r2ert + ert = 0.
Characteristic equation: r4 + 2r2 + 1 = 0.
(Quadratic in r2): (r2 + 1)(r2 + 1) = (r2 + 1)2 = 0.
(r2 + 1) = 0 of multiplicity 2.
r1 = +i, r2 = −i, of multiplicity 2.
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The roots are r1 = i, r2 = −i, r3 = i, r4 = −i.
r1 and r2 are complex conjugates, with λ = 0, µ = 1.
The fundamental set of solutions is:
y1(t) = eλt cosµt = cos t, y2(t) = eλt sinµt = sin t, y3(t) = t cos t, y4(t) = t sin t.
The general solution is y(t) = c1 cos t+ c2 sin t+ c3t cos t+ c4t sin t.

7 Reduction of Order

The method of reduction of order will work on nth order differential equations, however, it is mainly used
on second order equations.

Suppose we have the DE

y′′ + p(t)y′ + q(t)y = 0

where p, q are continuous on some interval I. Let us assume that y1(t) is a known solution of the differential
equation, and that y1(t) 6= 0 for all t in I. We construct a solution of the form:

y = u(t)y1(t)
y′ = uy′1 + y1u

′

y′′ = uy′′1 + 2y′1u
′ + y1u

′′

where our job is to determine u such that y satisfies the differential equation. Substituting into the differential
equation, we obtain:

y′′ + py′ + qy = u[y′′1 + py′1 + qy1] + y1u
′′ + (2y′1 + py1)u′ = 0

0 = y1u
′′ + (2y′1 + py1)u′

We make the substitution w = u′. This is the reduction of order part. The new equation in w is linear and
separable:

y1w
′ + (2y′1 + py1)w = 0

y1
dw

dt
+ (2y′1 + py1)w = 0

dw

w
= −(2

y′1
y1

+ p)dt∫
dw

w
= −

∫
(2
y′1
y1

+ p)dt

ln |w| = −2
∫
dy1
y1

−
∫
p dt+ C

ln |w| = −2 ln |y1| −
∫
p dt+ C

ln |wy2
1 | = −

∫
p dt+ C
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wy2
1 = c1 exp

(
−
∫
p dt

)
w = c1

exp
(
−
∫
p dt

)
y2
1

We still need to integrate once more to get the u, since u′ = w:

u = c1

∫
exp

(
−
∫
p dt

)
y2
1

dt+ c2

The solution to the differential equation is given by:

y = u(t)y1(t)

= c1y1(t)
∫

exp
(
−
∫
p(t) dt

)
y2
1(t)

dt+ c2y1(t)

Now, two solutions of the differential equation are

y1(t) (given or known) , y2(t) = y1(t)
∫

exp
(
−
∫
p(t) dt

)
y2
1(t)

dt

8 Nonhomogeneous Differential Equations

The Process to solve second order nonhomogeneous equations:

1. Find the general solution of the corresponding homogeneous equation. This solution is called the
complementary solution, and is denoted yc(t) = c1y1(t) + c2y2(t).

2. Find some singular solution Y (t) of the nonhomogeneous equation. This is called the particular solution,
and is denoted yp(t) = Y (t).

3. The general solution to the nonhomogeneous equation is given by y(t) = yc(t) + yp(t).

9 Undetermined Coefficients

Summary of how to use undetermined coefficients to find a particular solution:

• If g(t) = eβt, assume the particular solution is proportional to eβt.

• If g(t) = sinβt, cosβt, assume the particular solution is proportional to a linear combination of sinβt
and cosβt.

• If g(t) is a polynomial, than assume the particular solution is a polynomial of like degree.
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• If g(t) is a product of the above forms, assume the particular solution is the corresponding product.

• If g(t) has more than one term, split the differential equation up and solve for a particular solution for
each term individually.

• If the assumed solution has any part which appears in the complementary solution, the method will
fail; multiply the assumed solution by tn until there is no overlap with the complementary solution.

The method is essentially the same for higher order differential equations.

9.1 Example

Find the general solution of the differential equation u′′ + w2
0u = cos(wt), where w2

0 6= w2.

First, solve the associated homogeneous equation u′′ + w2
0u = 0.

Assume u = ert.
Substitute into the differential equation: r2ert + w2

0e
rt = 0.

Characteristic equation: r2 + w2
0 = 0.

Roots of the characteristic equation are complex: r = ±w0i = λ± µi.
Therefore, λ = 0, µ = w0.
A fundamental set of solutions is u1 = cosw0t, u2 = sinw0t.
The complementary solution is therefore uc(t) = c1 cosw0t+ c2 sinw0t.

Get a particular solution of the nonhomogeneous equation. Assume U(t) = A coswt+B sinwt.
Substitute into the differential equation:

(−Aw2 coswt−Bw2 sinwt) + w2
0(A coswt+B sinwt) = coswt

A(w2
0 − w2) coswt+B(w2

0 − w2) sinwt = coswt
→ A(w2

0 − w2) = 1 B(w2
0 − w2) = 0

A =
1

w2
0 − w2

B = 0

The particular solution of the nonhomogeneous differential equation is

yp(t) =
1

w2
0 − w2

coswt

and the general solution is

y(t) = yc(t) + yp(t) = c1 cosw0t+ c2 sinw0t+
1

w2
0 − w2

coswt.

10 Variation of Parameters on 1st Order Equations

To begin, let’s look at the method applied to something we have already seen, namely the first order equation:

y′ + p(t)y = g(t)
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where p, g are continuous on I.

The equation with f(t) = 0

y′ + p(t)y = 0

has the solution

yc(t) = c1 exp(−
∫
p(t)dt) = c1y1(t).

We want to write the solution of the equation where f(t) 6= 0 as

y(t) = yc(t) + yp(t)

Variation of parameters consists of finding a particular solution such that:

yp(t) = Y (t) = u1(t)y1(t).

What we have done is changed the constant in the complementary solution to a variable function of t.

Differentiate and substitute into the nonhomogeneous differential equation:

Y (t) = u1(t)y1(t)
Y ′(t) = u′1(t)y1(t) + u1(t)y′1(t)

u1(t)[y′1 + p(t)y1] + y1u
′
1 = g(t)

Since y1(t) solves the homogeneous equation, the first term is zero, and we have:

y1u
′
1 = g(t)

We can immediately separate variables and integrate to determine:

u1(t) =
∫

g(t)
y1(t)

dt+ c1

Setting the constant of integration c1 = 0 (since we are looking for a particular solution), we arrive at:

yp(t) = u1(t)y1(t) = y1(t)
∫

g(t)
y1(t)

dt
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Collecting everything together, we see that the general solution to the nonhomegeneous equation is

y(t) = yc(t) + yp(t)

= c1y1(t) + y1(t)
∫

g(t)
y1(t)

dt

Look back at the integration factor technique we used (pg 2). Notice the relation between y1(t) and µ(t):
y1(t) = µ(t)−1. Variation of parameters on a first order differential equation is just the integrating factor
technique!

11 Variation of Parameters on 2nd Order Equations

As we might guess, implementation requires the integration of the nonhomogeneous term which may prove
impossible to do.

The Method Consider

y′′ + p(t)y′ + q(t)y = g(t),

where p, q, g are continuous on I. Assume that we know the complementary solution of the associated
homogeneous equation (g(t) = 0):

yc(t) = c1y1(t) + c2y2(t).

The basic idea is to replace in the complementary solution the constants c1, c2 with the functions u1(t), u2(t):

Y (t) = u1(t)y1(t) + u2(t)y2(t),

and then we try and determine u1, u2 so that this solves the nonhomogeneous equation (this is then a
particular solution).

To determine u1, u2, we need to differentiate and substitute back into the differential equation. This will
give us a single differential equation involving u1, u2 and their first two derivatives. This is one differential
equation and two unknowns, so it will be underdetermined, and there will exist more than one set of functions
u1(t), u2(t) that will solve the equation.

We can therefore introduce a second condition of our own choosing, to result in two equations for two
unknowns, which will have a unique solution u1, u2.

Differentiate:

Y ′(t) = u′1(t)y1(t) + u1(t)y′1(t) + u′2(t)y2(t) + u2(t)y′2(t)
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Introduce our own second condition:

u′1(t)y1(t) + u′2(t)y2(t) = 0

which simplifies the differential equation to:

Y ′(t) = u1(t)y′1(t) + u2(t)y′2(t)

Differentiate a second time:

Y ′′(t) = u′1(t)y
′
1(t) + u1(t)y′′1(t) + u′2(t)y

′
2(t) + u2(t)y′′2(t)

Substitute into the differential equation, and we get:

u1(t)[y′′1(t) + p(y)y′1(t) + q(t)y1(t)] +
u2(t)[y′′2(t) + p(y)y′2(t) + q(t)y2(t)] +
u′1(t)y

′
1(t) + u′2(t)y

′
2(t) = g(t)

The first two terms are zero since y1, y2 solve the homogeneous equation. We are left with:

u′1(t)y
′
1(t) + u′2(t)y

′
2(t) = g(t).

We now have:

u′1(t)y1(t) + u′2(t)y2(t) = 0
u′1(t)y

′
1(t) + u′2(t)y

′
2(t) = g(t)

This is an algebraic system of two equation for the two unknowns u′1(t), u
′
2(t). We made the particular choice

for the second condition that we did so as to arrive at this set of equations. The solution is given by:

u′1(t) =
−y2(t)g(t)
W (y1, y2)(t)

, u′2(t) =
y1(t)g(t)

W (y1, y2)(t)

where W is the Wronskian, which is nonzero since y1, y2 form a fundamental set of solutions. The functions
u1, u2 are found by integrating to be:

u1(t) =
∫

−y2(t)g(t)
W (y1, y2)(t)

dt+ c3 u2(t) =
∫

y1(t)g(t)
W (y1, y2)(t)

dt+ c4

We can set the constants of integration c3, c4 equal to zero since we are solving for the particular solution.
Substituting back into the original expression, we find the particular solution to be:

yp(t) = Y (t) = −y1(t)
∫

y2(t)g(t)
W (y1, y2)(t)

dt+ y2(t)
∫

y1(t)g(t)
W (y1, y2)(t)

dt
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11.1 Example

Find the general solution for

y′′ − 4y′ + 4y = (t+ 1)e2t,

First, solve the associated homogeneous equation y′′ − 4y′ + 4y = 0.
Assume y = ert.
Substitute into the differential equation: r2ert − 4rert + 4ert = 0.
Characteristic equation: r2 +−4r + 4 = (r − 2)2 = 0.
Root of the characteristic equation is: r = 2 of multiplicity 2.
A fundamental set of solutions is y1 = e2t, y2 = te2t.
The complementary solution is therefore yc(t) = c1e

2t + c2te
2t.

Variation of parameters: replace in the complementary solution the constants c1, c2 with the functions
u1(t), u2(t):

Y (t) = u1(t)y1(t) + u2(t)y2(t) = u1e
2t + u2te

2t,

and then we try and determine u1, u2 so that this solves the nonhomogeneous equation (this is then a
particular solution).

Differentiate:

Y ′(t) = e2t(2u1 + u2 + 2tu2 + u′1 + tu′2)

Introduce our own second condition:

u′1 + tu′2 = 0

which simplifies the differential equation to:

Y ′(t) = e2t(2u1 + u2 + 2tu2)

Differentiate a second time:

Y ′′(t) = e2t(4u1 + 4(1 + t)u2 + 2u′1 + u′2 + 2tu′2)

Substitute into the differential equation, and we get upon simplification:

u′1(2e
2t) + u′2(e

2t + 2te2t) = (t+ 1)e2t

We now have a system of equations for u′1 and u′2:

u′1(e
2t)+ u′2(te

2t) = 0
u′1(2e

2t)+ u′2(e
2t + 2te2t) = (t+ 1)e2t
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u′1 =

∣∣∣∣ 0 te2t

(t+ 1)e2t e2t + 2te2t

∣∣∣∣∣∣∣∣ e2t te2t

2e2t e2t + 2te2t

∣∣∣∣ = −(t2 + t)

u′2 =

∣∣∣∣ e2t 0
2e2t (t+ 1)e2t

∣∣∣∣∣∣∣∣ e2t te2t

2e2t e2t + 2te2t

∣∣∣∣ = t+ 1

Integrate to find:

u1 = −
∫

(t2 + t)dt = − t
3

3
− t2

2

u2 =
∫

(t+ 1)dt =
t2

2
+ t

The particular solution is therefore given by:

yp(t) = u1y1 + u2y2 = −(
t3

3
+
t2

2
)e2t + (

t2

2
+ t)te2t = (

t3

6
+
t2

2
)e2t

The general solution is given by:

y(t) = yc(t) + yp(t) = c1e
2t + c2te

2t + (
t3

6
+
t2

2
)e2t.

12 Variation of Parameters on nth Order Equations

Assume we know a fundamental set of solutions y1, y2, . . . , yn for the homogeneous equation. Then the
general complementary solution is

yc(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t).

Assume a particular solution of the nonhomogeneous equation exists of the form:

Y (t) = u1(t)y1(t) + u2(t)y2(t) + · · ·+ un(t)yn(t).

Since we have n functions un to determine, we shall have to specify n conditions. One condition is that Y (t)
satisfy the differential equation:

L[Y ] = g(t).
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The other n− 1 conditions are chosen to simplify the calculation as much as possible.

Everything is a function of time, so drop that notation:

Y = u1y1 + u2y2 + · · ·+ unyn

Now start taking derivatives:

• First Condition: u′1y1 + u′2y2 + · · ·+ u′nyn = 0

• First Derivative: Y ′ = u1y
′
1 + u2y

′
2 + · · ·+ uny

′
n

• Second Condition: u′1y
′
1 + u′2y

′
2 + · · ·+ u′ny

′
n = 0

• Second Derivative: Y (2) = u1y
(2)
1 + u2y

(2)
2 + · · ·+ uny

(2)
n

Continue this procedure, to get the following:

• n− 1 conditions: u′1y
(m)
1 + u′2y

(m)
2 + · · ·+ u′ny

(m)
n = 0, m = 0, 1, 2, . . . , n− 2

• n− 1 derivatives: Y (m) = u1y
(m)
1 + u2y

(m)
2 + · · ·+ uny

(m)
n , m = 0, 1, 2, . . . , n− 1

The nth derivative is therefore:

Y (n) = (u1y
(n)
1 + u2y

(n)
2 + · · ·+ uny

(n)
n ) + (u′1y

(n−1)
1 + u′2y

(n−1)
2 + · · ·+ u′ny

(n−1)
n )

Substitute all this into the differential equation, collect terms, use L[yi] = 0, and you will arrive at

u′1y
(n−1)
1 + u′2y

(n−1)
2 + · · ·+ u′ny

(n−1)
n = g

This equation plus the n− 1 conditions gives an algebraic system, n equations for the n unknowns u′i:

u′1y
(0)
1 + u′2y

(0)
2 + · · ·+ u′ny

(0)
n = 0

u′1y
(1)
1 + u′2y

(1)
2 + · · ·+ u′ny

(1)
n = 0

u′1y
(2)
1 + u′2y

(2)
2 + · · ·+ u′ny

(2)
n = 0

...
u′1y

(n−2)
1 + u′2y

(n−2)
2 + · · ·+ u′ny

(n−2)
n = 0

u′1y
(n−1)
1 + u′2y

(n−1)
2 + · · ·+ u′ny

(n−1)
n = g

The existence of a solution of this algebraic system is that W (y1, y2, . . . , yn) 6= 0, which have since the yi

form a fundamental set of solutions (linearly independent).
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The solution to the system is found using Cramer’s Rule:

u′m(t) =
g(t)Wm(t)
W (t)

,m = 1, 2, . . . , n,

where W (t) = W (y1, y2, . . . , yn) and Wm(t) is found from W (t) by replacing the mth column by the column
(0,0,0,. . . ,1). This is because the right hand side of the system of equations are all zero except for the one
that is g(t), and we have factored out the g(t) in the equation for u′m(t).

A particular solution of the nonhomogeneous equation is given by

Y (t) =
n∑

m=1

ym(t)
∫ t

t0

g(s)Wm(s)
W (s)

ds.

12.1 Example

Find the solution to y′′′ − y′ = t by variation of parameters.

First, solve the homogeneous equation for the complementary solution.
Assume y(t) = ert.
Characteristic equation: r3 − r = r(r − 1)(r + 1) = 0.
Roots are r1 = 0, r2 = +1, r2 = −1.
A fundamental set of solutions is y1 = 1, y2 = et, y3 = e−t.
The complementary solution is therefore: yc(t) = c1 + c2e

t + c3e−t.

The Wronskain of the fundamental set of solutions is:

W (y1, y2, y3)(t) =

∣∣∣∣∣∣
1 et e−t

0 et −e−t

0 et e−t

∣∣∣∣∣∣ = 2

Get a particular solution of the form Y (t) = Y1(t) + Y2(t) + Y3(t).
Note that the nonhomogeneous term is g(t) = t.

Y1(t):

W1(y1, y2, y3)(t) =

∣∣∣∣∣∣
0 et e−t

0 et −e−t

1 et e−t

∣∣∣∣∣∣ = −2

∫ t

t0

g(s)W1(s)
W (s)

ds =
∫ t

t0

s(−2)
2

ds = −
∫ t

t0

sds = − t
2

2
− t20

2

Since t0 is arbitrary, let’s set it equal to zero, and we have:

Y1(t) = y1

∫ t

t0

g(s)W1(s)
W (s)

ds = y1(t)
(
− t

2

2

)
= − t

2

2
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Y2(t):

W2(y1, y2, y3)(t) =

∣∣∣∣∣∣
1 0 e−t

0 0 −e−t

0 1 e−t

∣∣∣∣∣∣ = e−t

∫ t

t0

g(s)W2(s)
W (s)

ds =
∫ t

0

se−s

2
ds =

1
2
(1− e−t(1 + t))

Y2(t) = y2

∫ t

t0

g(s)W2(s)
W (s)

ds =
et

2
− (1 + t)

2

Y3(t):

W3(y1, y2, y3)(t) =

∣∣∣∣∣∣
1 et 0
0 et 0
0 et 1

∣∣∣∣∣∣ = et

∫ t

t0

g(s)W3(s)
W (s)

ds =
∫ t

0

ses

2
ds =

1
2
(1 + et(t− 1))

Y3(t) = y3

∫ t

t0

g(s)W3(s)
W (s)

ds =
e−t

2
+

(t− 1)
2

The complete particular solution is given by

Y (t) = Y1(t) + Y2(t) + Y3(t) = − t
2

2
+
et

2
+
e−t

2
− 1

The last three terms are part of the complementary solution and so can be dropped from the particular
solution. The particular solution we choose will be Y (t) = −t2/2.

The general solution is

y(t) = yc(t) + yp(t) = c1 + c2e
t + c3e

−t − t2

2

Note: This example is much simpler using undetermined coefficients:

Assume a particular solution looks like: Y (t) = At2 +Bt.
Y ′(t) = 2At+B.
Y ′′(t) = 2A.
Y ′′′(t) = 0.
Substitute into the differential equation: y′′′ − y′ = 0− 2At−B = t.
Therefore, B = 0, A = −1/2.
A particular solution is therefore yp(t) = −t2/2.
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13 Ordinary and Regular Singular Points

These classifications are for second order differential equations.

Consider the differential equation:

P (x)y′′ +Q(x)y′ +R(x)y = 0.

The point x0 is an ordinary point if

p(x) =
Q(x)
P (x)

and q(x) =
R(x)
P (x)

are analytic about x = x0 (convergent Taylor series in some nonzero interval). If x = x0 is not ordinary, it
is a singular point. We say x0 is a regular singular point if

(x− x0)p(x) and (x− x0)2q(x)

are analytic about x = x0.

Irregular singular points are singular points which are not regular. There is no comprehensive theory for
irregular singular points (although you could try techniques like asymptotics and dominant balance).

You can also classify the point x0 = ∞ by making the transformation x = 1/t. This is called finding
singularities at infinity.

If you are interested in these methods, take a look at Advanced Mathematical Methods for Scientists and
Engineers (Asymptotic Methods and Perturbation Theory), Bender and Orszag. It was reprinted in 1999,
and I think it is a wonderful book.

13.1 Example

Consider the differential equation:

(x+ 2)2(x− 1)y′′ + 3(x− 1)y′ − 2(x+ 2)y = 0.

Find and classify all the singular points.

Solution:

p(x) =
Q(x)
P (x)

=
3(x− 1)

(x+ 2)2(x− 1)
=

3
(x+ 2)2

has a singular point at x0 = −2.

q(x) =
R(x)
P (x)

=
−2(x+ 2)

(x+ 2)2(x− 1)
=

−2
(x+ 2)(x− 1)
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has singular points at x0 = −2,+1.

The singular points are x0 = −2,+1.

Classify: x0 = −2:

(x− x0)p(x) = (x+ 2)
3

(x+ 2)2
=

3
x+ 2

(x− x0)2q(x) = (x+ 2)2
−2

(x+ 2)(x− 1)
=
−2(x+ 2)
x− 1

The second has a convergent Taylor series about x0 = −2, but the first does not. Therefore x0 = −2 is an
irregular singular point.

Classify: x0 = +1:

(x− x0)p(x) = (x− 1)
3

(x+ 2)2
=

3(x− 1)
(x+ 2)2

(x− x0)2q(x) = (x− 1)2
−2

(x+ 2)(x− 1)
=
−2(x− 1)
(x+ 2)

These both have convergent Taylor series for some nonzero interval about x0 = +1, so x0 = +1 is a regular
singular point.

14 Euler Equations

Consider the differential equation L[y] = x2y′′ + αxy′ + βy = 0 where α, β are real constants. The point
x0 = 0 is a regular singular point since

p(x) =
α

x
, q(x) =

β

x2

are not analytic at x = 0, so x = 0 is a singular point.

xp(x) = x
αx

x2
= α, x2q(x) = x2 β

x2
= β

are both analytic about x0 = 0, so x = 0 is a regular singular point.

In any interval not containing the origin, the solution of Euler’s equation is

y = c1y1 + c2y2
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where y1, y2 are linearly independent. For now, let’s take x > 0. Note that

y = xr, y′ = rxr−1, y′′ = r(r − 1)xr−2

So let’s assume that the equation has a solution of the form xr.

L[xr] = x2(xr)′′ + αx(xr)′ + βxr = xr[r(r − 1) + αr + β]

If r is a root of the quadratic equation

F (r) = r(r − 1) + αr + β = 0

then xr is a solution of Euler’s equation. The roots are

r1,2 =
−(α− 1)±

√
(α− 1)2 − 4β

2

You should see that this is the same method we used when we assumed a solution of the form et for second
order equations and derived a characteristic equation. This equation we seek roots of is similar to the
characteristic equation, and we call it the indicial equation.

We need to look at the cases: real distinct roots; real repeated roots; complex roots.

14.1 Real Distinct Roots

If r1 6= r2 and both are real, then y1 = xr1 and y2 = xr2 are two solutions of Euler’s equation. Their
Wronskian is nonzero, so they are linearly independent, and we can write the general solution as:

y = c1x
r1 + c2x

r2 , x > 0

14.2 Equal roots

If the two roots of the indicial equation are equal, we can only write one solution to Euler’s equation,

y1 = xr1 , x > 0

The Method of Reduction of Order would allow us to determine a second solution:

y2 = xr1 lnx, x > 0

The Wronskian of the two solutions is nonzero, so they are linearly independent. The general solution of the
differential equation is therefore:

y = (c1 + c2 lnx)xr1 .
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14.3 Complex Roots

Complex roots occur in complex conjugate pairs for the Euler equation, since the coefficients of the equation
are real,

r1,2 = λ± µi.

We can write the solution as

y = c1x
λ+µi + c2x

λ−µi

This is a complex valued function, and we would prefer to have real valued functions since the Euler equation
is a real valued differential equation.

xλ+µi = xλxµi = xλeµi ln x = xλ[cos(µ lnx) + i sin(µ lnx)]

The real and imaginary parts are both solutions, so we can instead use the real valued solutions

y1 = xλ cos(µ lnx), y2 = xλ sin(µ lnx)

which we can show are linearly independent, and so the general solution is

y = c1x
λ cos(µ lnx) + c2x

λ sin(µ lnx)

Extension to x < 0 The solutions immediately transfer to the region x < 0, but could become complex
valued (think of x1/2). The change of variable x = −ξ, ξ > 0, and we obtain real valued solutions.

The general solution of the Euler equation

x2y′′ + αxy′ + βy = 0

in any interval not containing the origin is determined by the roots r1 and r2 of the equation

F (r) = r(r − 1) + αr + β = 0.

If the roots are real and distinct, the general solution is y = c1|x|r1 + c2|x|r2 .

If the roots are real and equal, the general solution is y = (c1 + c2 ln |x|)|x|r1 .

If the roots are complex, the general solution is y = |x|λ[c1 cos(µ ln |x|)+ c2 sin(µ ln |x|)], where r1,2 = λ±µi.
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14.4 Example

Solve the differential equation:

x2y′′ + 6xy′ − y = 0, x > 0.

This is an Euler equation.
Assume the solution looks like y = xr.
Differentiate and substitute into the differential equation.
r(r − 1)xr + 6rxr − xr = 0.
Indicial equation: r2 − r + 6r − 1 = r2 + 5r − 1 = 0.
The roots of the indicial equation are:
r1 = 1

2 (−5−
√

29) = -5.19258,
r2 = 1

2 (−5 +
√

29) = 0.19258,
two real, distinct roots.
The general solution is therefore:
y = c1x

r1 + c2x
r2 = c1x

−5.19258 + c2x
0.19258.

14.5 Example

Solve the differential equation:

x2y′′ + 3xy′ + 5y = 0.

This is an Euler equation.
Assume the solution looks like y = xr.
Differentiate and substitute into the differential equation.
r(r − 1)xr + 3rxr + 5xr = 0.
Indicial equation: r2 − r + 3r + 5 = r2 + 2r + 5 = 0.
The roots of the indicial equation are:
r1 = −1− 2i,
r2 = −1 + 2i,
two complex conjugate roots. We have λ = −1, µ = 2.
The general solution is therefore:
y = |x|λ[c1 cos(µ ln |x|) + c2 sin(µ ln |x|)] = |x|−1[c1 cos(2 ln |x|) + c2 sin(2 ln |x|)].

15 Series Solution about an Ordinary Point

15.1 Example

Find a series solution around x = x0 = 0 to the differential equation (1− x)y′′ + xy′ − y = 0.
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The coefficients in the differential equation are:

P (x) = 1− x

Q(x) = x

R(x) = −1

These are already in powers of (x−0), so we do not need to do any Taylor series expansions of the coefficients.

Since p(x) = x/(1− x) and q(x) = −1/(1− x) are analytic at x = 0, x0 = 0 is an ordinary point.

Assume a solution is of the form

y =
∞∑

n=0

anx
n

We assume the series will converge for some ρ, |x| < ρ. We will find ρ later.

Differentiate:

y =
∞∑

n=0

anx
n

y′ =
∞∑

n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n

y′′ =
∞∑

n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n

Substitute into the differential equation:

(1− x)
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n + x

∞∑
n=0

(n+ 1)an+1x
n −

∞∑
n=0

anx
n = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n+1 +

∞∑
n=0

(n+ 1)an+1x
n+1 −

∞∑
n=0

anx
n = 0

First, get the same power of x in each term. Replace m = n+ 1 in the two middle terms:

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
m=1

(m+ 1)mam+1x
m +

∞∑
m=1

mamx
m −

∞∑
n=0

anx
n = 0
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Relabel m = n:

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

(n+ 1)nan+1x
n +

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0

Secondly, get all the summations starting at the same point. Generally, choose the highest and make all the
summations start there. In this case we take out the n = 0 terms of the first and last terms:

2 · 1 a2x
0 +

∞∑
n=1

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

(n+ 1)nan+1x
n +

∞∑
n=1

nanx
n − a0x

0 −
∞∑

n=1

anx
n = 0

Now collect all the terms together:

(2a2 − a0)x0 +
∞∑

n=1

[(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + nan − an]xn = 0

We set the coefficients of x equal to zero (since the entire series equals zero). This is really equating powers
of x, so keep that in mind if you are equating two series!

2a2 − a0 = 0, n = 0
n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + nan − an = 0, n = 1, 2, 3, . . .

Notice that if we take n = 0 in the second relation, we get 2a2 − a0 = 0, so we can combine these two
relations. This is not always going to happen! The recurrence relation is therefore:

(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + nan − an = 0, n = 0, 1, 2, 3, . . .

Now, use the recurrence relation to determine the coefficients an. n = 0 specifies a2 in terms of a1 and a0.
Hence, a0 and a1 are arbitrary. They represent the constants of integration.

an+2 =
(n+ 1)n an+1 − (n− 1)an

(n+ 2)(n+ 1)
, n = 0, 1, 2, 3

a0 = arbitrary
a1 = arbitrary

a2 =
a0

2!

a3 =
2a2

3 · 2
=

2
3 · 2

a0

2!
=
a0

3!

a4 =
3 · 2 a3 − a2

4 · 3
=

3 · 2a0
3! −

a0
2!

4 · 3
=
a0

4!

a5 =
4 · 3 a4 − 2 a3

5 · 4
=

4 · 3a0
4! − 2a0

3!

5 · 4
=
a0

5!

In general, we have

an =
a0

n!
, n = 0, 2, 3, 4, . . .
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Note that the n = 1 term is not included in the above. The solution to the differential equation is:

y =
∞∑

n=0

anx
n

= a0 + a1x+
∞∑

n=2

a0

n!
xn

= a0

[
1 +

∞∑
n=2

a0

n!
xn

]
+ a1x

= a0y1(x) + a1y2(x)

As we mentioned before, the constants of integration are a0, a1, which we previously called c1, c2. A funda-
mental set of solutions is {y1, y2},

y1 = 1 +
∞∑

n=2

a0

n!
xn, y2 = x.

The solution y2 is obviously converged for all x. The convergence of y1 can be found using the ratio test.

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
n!
xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣ = 0 < 1 for all x.

The radius of convergence is therefore ρ = ∞.

16 Series Solution about a Regular Singular Point

The solution depends on the roots of the indicial equation.

Consider P (x)y′′ + Q(x)y′ + R(x)y = 0 in the neighbourhood of the regular singular point x0 = 0. Write
the equation in the following form:

x2y′′ + x[xp(x)]y′ + [x2q(x)]y = 0.

We have the associated Euler equation:

x2y′′ + xp0y
′ + q0y = 0.

We seek a solution of the form:

y = φ(r, x) =
∞∑

n=0

anx
n+r, a0 6= 0
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Differentiate the series and substitute into the differential equation:

L[φ](r, x) = a0F (r)xr +
∞∑

n=1

{
F (r + n)an +

n−1∑
k=0

ak[(r + k)pn−k + qn−k]

}
xr+n = 0

where

F (r) = r(r − 1) + p0r + q0.

The coefficients in each power of x must be zero! The xr term gives us the indicial equation:

F (r) = r(r − 1) + p0r + q0 = 0.

This is where the a0 6= 0 requirement becomes important!

This is exactly the indicial equation we would have found from the associated Euler equation. The roots of
the indicial equation r1, r2 are called the exponents of the singularity. They determine the qualitative
behaviour of the solution in the neighbourhood of the singularity.

These are easy to find, since we must simply solve the quadratic indicial equation for the associated Euler
equation:

r(r − 1) + p0r + q0 = 0,

where we obtain p0 and q0 from the expansions we must obtain anyway to solve the problem.

Setting the xr+n term equal to zero gives us the recurrence relation:

F (r + n)an +
n−1∑
k=0

ak[(r + k)pn−k + qn−k] = 0, n ≥ 1

Note: an depends on r and all the preceding coefficients!

Note: The an can be calculated provided F (r + n) 6= 0.

16.1 If r1, r2 are complex

We will have no problems with division by zero, and we will obtain two complex valued solutions for which
r1,2 = λ± µi. We can get real valued solutions by taking the real and imaginary parts of the solution as we
have done before.
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16.2 Real Roots

The roots of the indicial equation are r1,2; assume that r1 ≥ r2.
Therefore r1 + n 6= r1 or r1 + n 6= r2 for n ≥ 1.
So F (r1 + n) 6= 0 for n ≥ 1, and we can always determine one solution of the form:

y1(x) = xr1

[
1 +

∞∑
n=1

an(r1)xn

]
, x > 0.

We have labeled the an(r1) to indicate the dependence of the recurrence relation (and hence the an) on the
root of the indicial equation. We have taken the constant a0 = 1.

16.3 If r2 6= r1 and r1 − r2 is not a positive integer

Then r2 + n 6= r1 and r2 + n is never a root of the indicial equation (F (r2 + n) 6= 0), and we get a second
solution:

y2(x) = xr2

[
1 +

∞∑
n=1

an(r2)xn

]
, x > 0.

16.4 Repeated Roots r1 = r2

In this case, we can write the second solution as

y2(x) = y1(x) lnx+ xr1

∞∑
n=1

bnx
n.

Substitute into the differential equation in the usual way to obtain the bn.

Another way of proceeding is to use reduction of order. The second solution is then given by

y2(x) = y1(x)
∫

exp(−
∫
p(x)dx)

y2
1(x)

dx.

16.5 Roots that differ by an integer: r1 − r2 = N

In this case, we can write the second solution as

y2(x) = cy1(x) lnx+ xr1

∞∑
n=1

cnx
n.

Substitute into the differential equation in the usual way to obtain the cn. The constant c could be zero.
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Another way of proceeding is to use reduction of order. The second solution is then given by

y2(x) = y1(x)
∫

exp(−
∫
p(x)dx)

y2
1(x)

dx.

Convergence: Consider the series alone, with out the xr1,2 part. As before, these series will converge at
least with the radius of convergence of the minimum of the xp(x) and x2q(x) radius of convergence. These
functions are analytic at x0 = 0. The singular behaviour, if any, is entirely contained in the xr1,2 factor!

To go to negative x, we end up with the same equations, so we can replace x→ |x| and consider all x 6= 0.

16.6 Example

Solve the differential equation 3xy′′ + y′ − y = 0 with a series solution about x = 0.

Identify

p(x) =
1
3x
, q(x) = − 1

3x

Therefore, x = 0 is a singular point.

xp(x) =
1
3
, x2q(x) = −x

3

which are analytic about x = 0, so x = 0 is a regular singular point.

Assume a solution looks like

y =
∞∑

n=0

anx
n+r

y′ =
∞∑

n=0

(n+ r)anx
n+r−1

y′′ =
∞∑

n=0

(n+ r)(n+ r − 1)anx
n+r−2

Aside: Compare what is going on with what happens for the series solution about an ordinary point:

Ordinary Regular Singular
y = a0 + a1x+ a2x

2 + . . . y = a0x
r + a1x

r+1 + a2x
r+2 + . . .

y′ = a1 + 2a2x+ . . . y′ = ra0x
r−1 + (r + 1)a1x

r + (r + 2)a2x
r+1 + . . .

Notice that the a0 is still involved in the derivative! This is because each terms in y has an xr in it.
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Substitute into the differential equation:
P (x) = 3x, Q(x) = 1, and R(x) = −1 are already in powers of xn.

3x
∞∑

n=0

(n+ r)(n+ r − 1)anx
n+r−2 +

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r)(3n+ 3r − 3)anx
n+r−1 +

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r)(3n+ 3r − 2)anx
n+r−1 −

∞∑
n=0

anx
n+r = 0

xr[
∞∑

n=0

(n+ r)(3n+ 3r − 2)anx
n−1 −

∞∑
n=0

anx
n] = 0

xr[r(3r − 2)a0x
−1 +

∞∑
n=1

(n+ r)(3n+ 3r − 2)anx
n−1 −

∞∑
n=0

anx
n] = 0

xr[r(3r − 2)a0x
−1 +

∞∑
n=0

(n+ r + 1)(3n+ 3r + 1)an+1x
n −

∞∑
n=0

anx
n] = 0

xr[r(3r − 2)a0x
−1 +

∞∑
n=0

{(n+ r + 1)(3n+ 3r + 1)an+1 − an}xn] = 0

We can now identify the indicial equation and the recurrence relation:
Indicial equation: r(3r − 2) = 0, and a0 6= 0.
Recurrence equation: (n+ r + 1)(3n+ 3r + 1)an+1 − an = 0, n = 0, 1, 2, . . ..

Note: if a0 = 0, we do not get an indicial equation since the indicial equation is automatically satisfied for
all r. This is precisely where the restriction a0 6= 0 arises from.

The indicial equation has two roots, r1 = 2/3 and r2 = 0. We want to work out a series solutions for each
of the roots of the indicial equation. These are two distinct roots not differing by an integer, so we will get
two solutions.

r1 = 2/3:
The recurrence relation becomes:

an+1 =
an

(3n+ 5)(n+ 1)
, n = 0, 1, 2, 3, . . .

a0 = arbitrary

a1 =
a0

5 · 1
a2 =

a1

8 · 2
=

a0

2! 5 · 8
a3 =

a2

11 · 3
=

a0

3! 5 · 8 · 11
a4 =

a3

14 · 4
=

a0

4! 5 · 8 · 11 · 14
an =

a0

n! 5 · 8 · 11 · 14 · · · (3n+ 2)
; n = 1, 2, 3, . . .

y1 = a0x
2/3

[
1 +

∞∑
n=1

xn

n! 5 · 8 · 11 · 14 · · · (3n+ 2)

]
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But, a0 is arbitrary, so let’s set a0 = 1. This is the first of two solutions which will form a fundamental set
of solutions.

r1 = 0:
The recurrence relation becomes:

an+1 =
an

(n+ 1)(3n+ 1)
, n = 0, 1, 2, 3, . . .

a0 = arbitrary

a1 =
a0

1 · 1
a2 =

a1

2 · 4
=

a0

2! 1 · 4
a3 =

a2

3 · 7
=

a0

3! 1 · 4 · 7
a4 =

a3

4 · 10
=

a0

4! 1 · 4 · 7 · 10
an =

a0

n! 1 · 4 · 7 · 10 · · · (3n− 2)
; n = 1, 2, 3, . . .

y2 = a0x
0

[
1 +

∞∑
n=1

xn

n! 1 · 4 · 7 · 10 · · · (3n− 2)

]

But, a0 is arbitrary, so let’s set a0 = 1. This is the second of two solutions which will form a fundamental
set of solutions.

Note: Here the recurrence relations did not generate a series solution that split into two solutions based on
factoring out an a0 and an a1. We got our two solutions via the two roots of the indicial equation. This is
a fundamental difference over how we got the general solution for a series solution about an ordinary point.

The y1 and y2 are linearly independent, since the powers of x are different. The ratio test will show the
series converge for all x. Alternately, you could look at the complex poles of p(x) and q(x), note that the
only pole is at x = 0, and therefore the minimum radius of convergence of our solutions must be ρ = ∞.

The general solution is therefore:

y = c1y1 + c2y2

y1 = x2/3

[
1 +

∞∑
n=1

xn

n! 5 · 8 · 11 · 14 · · · (3n+ 2)

]

y2 =

[
1 +

∞∑
n=1

xn

n! 1 · 4 · 7 · 10 · · · (3n− 2)

]

17 Systems of Differential Equations

17.1 Basic Theory

Consider the system of linear 1st order equations: x′ = p(t)x+g(t), where: x: n vector, g(t): n vector, p(t):
n× n matrix. If g(t) = 0 the system is homogeneous. If p(t) = A constant, we have constant coefficients.
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An initial value problem contains the initial conditions: x(t0) = x0.

Homogeneous: x′ = p(t)x

The solutions are written as

x(1) =


x11

x21

...
xn1

 , . . . , x(k) =


x1k

x2k

...
xnk

 , . . . , x(n) =


x1n

x2n

...
xnn

 .

so xij refers to the ith component of the jth solution x(j).

The Superposition Principle. If x(k1) and x(k2) are solutions to a system of linear differential equations, then
c1x(k1) + c2x(k2) is also a solution for constant c1 and c2.

Linear Independence and The Wronskian

If we have the n solution vectors x(i), i = 1, . . . , n, then we define the fundamental matrix:

Ψ(t) = X(t) =
(
x(1) · · ·x(n)

)
=


x11 · · · x1n

x21 · · · x2n

...
...

xn1 · · · xnn


The Wronskian is defined as the determinant of the fundamental matrix, W (t) = detX. If W (t) 6= 0, then
the x(i) are linearly independent.

A fundamental set of solutions is x(i), i = 1, . . . , n, when the x(i) are linearly independent and solutions of the
system of differential equations. A general solution is constructed from a fundamental set as x =

∑n
i=1 cix

(i),
for ci constant.

Nonhomogeneous: x′ = p(t)x + g(t)

The general solution is x = xc + xp where:
xc, the complementary solution, is the general solution of the associated homogeneous problem x′ = p(t)x.
xp is any particular solution, which we can find by

• diagonalization,

• undetermined coefficients,

• variation of parameters.
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18 Homogeneous Systems with Constant Coefficients

18.1 Example: Real Eigenvalues

Solve the initial value problem:

x′ = Ax =
(

5 −1
3 1

)
x, x(0) =

(
2

−1

)
.

Assume that x = ξeλt, where ξ is a constant 2-vector and λ is a constant scalar. Differentiate and substitute
into the differential system:

x = ξeλt

x′ = λξeλt

Substitute: λξeλt = Aξeλt

eλt 6= 0: (A− λI)ξ = 0 or
(

5− λ −1
3 1− λ

)(
ξ1
ξ2

)
=
(

0
0

)

Eigenvalues:

det(A− λI) = 0
(5− λ)(1− λ+ 3 = 0

5− λ− 5λ+ λ2 + 3 = 0
λ2 − 6λ+ 8 = 0

(λ− 4)(λ− 2) = 0

The eigenvalues are λ(1) = 4 and λ(2) = 2.

Eigenvectors:

λ(1) = 4:

(A− λ(1)I)ξ(1) = 0

(A− 4I)ξ(1) = 0(
5− 4 −1

3 1− 4

)(
ξ
(1)
1

ξ
(1)
2

)
=

(
0
0

)
(

1 −1
3 −3

)(
ξ
(1)
1

ξ
(1)
2

)
=

(
0
0

)

So we get the two equations:

ξ
(1)
1 − ξ

(1)
2 = 0

3ξ(1)1 − 3ξ(1)2 = 0
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These are the same equation. So we have 1 equation with 2 unknowns.
Choose ξ(1)2 to be arbitrary. Set ξ(1)2 = 1.
Therefore, ξ(1)1 = ξ

(1)
2 = 1.

ξ(1) =
(

1
1

)
is eigenvector associated with the eigenvalue λ(1) = 4.

A solution of the system of differential equations is x(1) =
(

1
1

)
e4t.

λ(2) = 2:

(A− λ(2)I)ξ(2) = 0

(A− 2I)ξ(2) = 0(
5− 2 −1

3 1− 2

)(
ξ
(2)
1

ξ
(2)
2

)
=

(
0
0

)
(

3 −1
3 −1

)(
ξ
(2)
1

ξ
(2)
2

)
=

(
0
0

)

So we get the two equations:

3ξ(2)1 − ξ
(2)
2 = 0

3ξ(2)1 − ξ
(2)
2 = 0

These are the same equation. So we have 1 equation with 2 unknowns.
Choose ξ(2)2 to be arbitrary. Set ξ(2)2 = 3.
Therefore, ξ(2)1 = 1

3ξ
(2)
2 = 1.

ξ(2) =
(

1
3

)
is eigenvector associated with the eigenvalue λ(2) = 2.

A solution of the system of differential equations is x(2) =
(

1
3

)
e2t.

The General Solution:
Check linear independence by computing the Wronskian:

W (t) = det Ψ(t) = det
(
x(1)x(2)

)
=
∣∣∣∣ e4t e2t

e4t 3e2t

∣∣∣∣ = 3e6t − e6t = 2e6t 6= 0

Therefore, x(1) and x(2) are linearly independent. Therefore, they form a fundamental set of solutions.

A general solution is therefore

x = c1x(1) + c2x(2)

= c1

(
1
1

)
e4t + c2

(
1
3

)
e2t
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The general solution could also be written in terms of the fundamental matrix and a constant vector c. This
constant vector represents the constants of integration.

x =
(
e4t e2t

e4t 3e2t

)(
c1
c2

)
= Ψ(t)c

Solve the initial value problem:

Apply the initial condition and determine the constant vector c:

x(0) =
(

2
−1

)
= Ψ(0)c =

(
1 1
1 3

)(
c1
c2

)

Use Cramer’s Rule to solve for c1 and c2:

c1 =

∣∣∣∣ 2 1
−1 3

∣∣∣∣∣∣∣∣ 1 1
1 3

∣∣∣∣ =
6 + 1
3− 1

=
7
2

c2 =

∣∣∣∣ 1 2
1 −1

∣∣∣∣
2

=
−1− 2

2
= −3

2

The solution to the initial value problem is therefore

x =
7
2

(
1
1

)
e4t − 3

2

(
1
3

)
e2t =

(
e4t e2t

e4t 3e2t

)(
7
2
− 3

2

)
=
(

7
2e

4t − 3
2e

2t

7
2e

4t − 9
2e

2t

)

18.2 Example: Complex Eigenvalues

Solve the system of differential equations:

x′ = Ax =
(

3 −2
4 −1

)
x.

Assume that x = ξeλt, where ξ is a constant 2-vector and λ is a constant scalar. Differentiate and substitute
into the differential system:

x = ξeλt

x′ = λξeλt

Substitute: λξeλt = Aξeλt

eλt 6= 0: (A− λI)ξ = 0 or
(

3− λ −2
4 −1− λ

)(
ξ1
ξ2

)
=
(

0
0

)
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Eigenvalues:

det(A− λI) = 0∣∣∣∣ 3− λ −2
4 −1− λ

∣∣∣∣ = 0

(3− λ)(−1− λ) + 8 = 0
λ2 − 2λ+ 5 = 0

(λ− (1 + 2i))(λ− (1− 2i)) = 0

The eigenvalues are λ(1) = 1+2i and λ(2) = 1−2i. The eigenvalues are complex conjugates since the matrix
A is real valued.

Eigenvectors:

λ(1) = 1 + 2i:

(A− λ(1)I)ξ(1) = 0

(A− (1 + 2i)I)ξ(1) = 0(
3− 1− 2i −2

4 1− 1− 2i

)(
ξ
(1)
1

ξ
(1)
2

)
=

(
0
0

)
(

2− 2i −2
4 −2− 2i

)(
ξ
(1)
1

ξ
(1)
2

)
=

(
0
0

)

So we get the two equations:

(2− 2i)ξ(1)1 − 2ξ(1)2 = 0

4ξ(1)1 − (2 + 2i)ξ(1)2 = 0

These are the same equation. So we have 1 equation with 2 unknowns.
Choose ξ(1)1 to be arbitrary. Set ξ(1)1 = 1.
Therefore, ξ(1)2 = (1− i)ξ(1)1 = 1− i.

ξ(1) =
(

1
1− i

)
is eigenvector associated with the eigenvalue λ(1) = 1 + 2i.

The eigenvalues and eigenvectors occur in complex conjugate pairs for a real valued matrix, so we can
immediately say:

ξ(2) =
(

1
1 + i

)
is eigenvector associated with the eigenvalue λ(2) = 1− 2i.

Complex valued solutions of the system of differential equations are

x(1) =
(

1
1− i

)
e(1+2i)t, and

x(2) =
(

1
1 + i

)
e(1−2i)t.
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To get real valued solutions, we can split x(1) into real and complex parts. Each of these will be a solution,
and each will be real valued.

x(1) =
(

1
1− i

)
e(1+2i)t

=
[(

1
1

)
−
(

0
1

)
i

]
[cos 2t+ i sin 2t] et

=
[(

1
1

)
et cos 2t+

(
0
1

)
et sin 2t

]
+ i

[(
1
1

)
et sin 2t−

(
0
1

)
et cos 2t

]
= u(t) + iv(t)

Two real valued solutions are u(t) and v(t).

u(t) =
(

1
1

)
et cos 2t+

(
0
1

)
et sin 2t

v(t) =
(

1
1

)
et sin 2t−

(
0
1

)
et cos 2t

The General Solution:
Check linear independence by computing the Wronskian:

W (t) = det Ψ(t) = det (u v) =
∣∣∣∣ et cos 2t et sin 2t
et cos 2t+ et sin 2t et sin 2t− et cos 2t

∣∣∣∣ = −e2t 6= 0

Therefore, u and v are linearly independent. Therefore, they form a fundamental set of solutions. A general
solution is therefore x = c1u(t) + c2v(t).

18.3 Example: Repeated Eigenvalues

Solve the system of differential equations:

x′ = Ax =

 1 −2 2
−2 1 −2

2 −2 1

x.

Assume that x = ξeλt, where ξ is a constant 3-vector and λ is a constant scalar. Differentiate and substitute
into the differential system:

x = ξeλt

x′ = λξeλt

Substitute: λξeλt = Aξeλt

eλt 6= 0: (A− λI)ξ = 0
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Eigenvalues:

det(A− λI) = 0∣∣∣∣∣∣
1− λ −2 2
−2 1− λ −2
2 −2 1− λ

∣∣∣∣∣∣ = 0

−(λ+ 1)2(λ− 5) = 0

The eigenvalues are λ(1) = −1, λ(2) = −1, and λ(3) = 5. We have an eigenvalue of multiplicity two.

Eigenvectors:

λ(1) = λ(2) = −1:

(A− λ(1)I)ξ = 0

(A− I)ξ = 0 2 −2 2
−2 2 −2

2 −2 2

 ξ1
ξ2
ξ3

 =

 0
0
0


So we get the three equations:

2ξ1 − 2ξ2 + 2ξ3 = 0
−2ξ1 + 2ξ2 − 2ξ3 = 0

2ξ1 − 2ξ2 + 2ξ3 = 0

These are the same equation. So we have 1 equation with 3 unknowns.
Choose ξ2 and ξ3 to be arbitrary.
Therefore, ξ1 = ξ2 − ξ3.

Set ξ2 = 1, ξ3 = 0. Therefore, ξ1 = 1.

ξ(1) =

 1
1
0

 is eigenvector associated with the eigenvalue λ(1) = −1.

Set ξ2 = 0, ξ3 = 1. Therefore, ξ1 = −1.

ξ(2) =

 −1
0
1

 is eigenvector associated with the eigenvalue λ(2) = −1.

We were able to obtain two linearly independent (they are not multiples of each other) eigenvectors even
though we only had a single eigenvalue! Two linearly independent solutions are

x(1) =

 1
1
0

 e−t, and

x(2) =

 −1
0
1

 e−t.
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To get the third solution, use the third eigenvalue.

λ(3) = 5:

(A− λ(3)I)ξ = 0

(A− 5I)ξ = 0 −4 −2 2
−2 −4 −2

2 −2 −4

 ξ1
ξ2
ξ3

 =

 0
0
0


So we get the three equations:

− 4ξ1 − 2ξ2 + 2ξ3 = 0
−2ξ1 − 4ξ2 − 2ξ3 = 0

2ξ1 − 2ξ2 − 4ξ3 = 0

You can use Gauss Jordan elimination to determine the solution to this system. Or, you could use the
command Solve in Mathematica. The solution is

ξ1 = ξ3

ξ2 = −ξ3
ξ3 = arbitrary

If we pick ξ3 = 1, we have ξ1 = 1, ξ2 = −1, ξ3 = 1.

ξ(3) =

 1
−1

1

 is eigenvector associated with the eigenvalue λ(3) = 5.

A third solution to the system of differential equations is x(3) =

 1
−1

1

 e5t.

The general solution is therefore (you can check linear independence):

x = c1

 1
1
0

 e−t + c2

 −1
0
1

 e−t + c3

 1
−1

1

 e5t

18.4 Example: Repeated Eigenvalues with One Eigenvector

Solve the system of differential equations:

x′ = Ax =
(

3 −18
2 −9

)
x.
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Assume that x = ξeλt, where ξ is a constant 2-vector and λ is a constant scalar. Differentiate and substitute
into the differential system:

x = ξeλt

x′ = λξeλt

Substitute: λξeλt = Aξeλt

eλt 6= 0: (A− λI)ξ = 0

Eigenvalues:

det(A− λI) = 0∣∣∣∣ 3− λ −18
2 −9− λ

∣∣∣∣ = 0

(λ+ 3)2 = 0

The eigenvalues are λ(1) = −3, λ(2) = −3. We have an eigenvalue of multiplicity two.

Eigenvectors:

λ(1) = λ(2) = −3:

(A− λ(1)I)ξ = 0

(A + 3I)ξ = 0(
6 −18
2 −6

)(
ξ1
ξ2

)
=

(
0
0

)

So we get the two equations:

6ξ1 − 18ξ2 = 0
2ξ1 − 6ξ2 = 0

These are the same equation. So we have 1 equation with 2 unknowns.
Choose ξ2 to be arbitrary. Set ξ2 = 1.
Therefore, ξ1 = 3ξ2 = 3.

ξ(1) =
(

3
1

)
is eigenvector associated with the eigenvalue λ(1) = −3.

One solution is

x(1) =
(

3
1

)
e−3t.

We cannot get a second eigenvector for this eigenvalue like we did in the previous example. For a second
order linear differential equation, if we had a repeated root of the characteristic equation we could show
a second solution existed which looked like tert, in other words, t times the first solution. We want to do
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something similar here, but we need to modify things just a bit. For systems, we assume a second solution
exists which looks like:

x(2) = x(1)t+ ηeλ(1)t.

Notice that the only difference from what we did before was that we now add on a extra term that looks
like the first solution, where η is a 2-vector constant. Now we must determine η.

If you substitute this into the differential equation you will find:

(A− λ(1)I)ξ(1)eλ(1)tt+ (Aη − ηλ(1) − ξ(1))eλ(1)t = 0

Setting the coefficients of powers of t to zero, and noting that eλ(1)t 6= 0, gives us the two equations:

(A− λ(1)I)ξ(1) = 0
(A− λ(1)I)η = ξ(1)

The first equation we have already solved. We must solve the second equation for η.

(A− λ(1)I)η = ξ(1)

(A + 3I)η =
(

3
1

)
(

6 −18
2 −6

)(
η1
η2

)
=

(
3
1

)

So we get the two equations:

6η1 − 18η2 = 3
2η1 − 6η2 = 1

These are the same equation. So we have 1 equation with 2 unknowns.
Choose η2 to be arbitrary. Set η2 = 0.
Therefore, η1 = 1

2 .

A second solution is therefore

x(2) = x(1)t+ ηeλ(1)t

=
(

3
1

)
te−3t +

(
1/2
0

)
e−3t

The general solution is x = c1x(1) + c2x(2).
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19 Nonhomogeneous Systems with Constant Coefficients: Unde-
termined Coefficients

19.1 Example

Solve the linear differential system

x′ = Ax + g(t) =
(

2 −1
3 −2

)
+
(
et

t

)

First, get the complimentary solution by solving the associated homogeneous equation:

x′ = Ax =
(

2 −1
3 −2

)

Assume that x = ξeλt, where ξ is a constant 2-vector and λ is a constant scalar. Differentiate and substitute
into the differential system:

x = ξeλt

x′ = λξeλt

Substitute: λξeλt = Aξeλt

eλt 6= 0: (A− λI)ξ = 0(
2− λ −1

3 −2− λ

)(
ξ1
ξ2

)
=
(

0
0

)

Eigenvalues:

det(A− λI) = 0∣∣∣∣ 2− λ −1
3 −2− λ

∣∣∣∣ = 0

(2− λ)(−2− λ) + 3 = 0
λ2 − 1 = 0

(λ+ 1)(λ− 1) = 0

The eigenvalues are λ(1) = −1 and λ(2) = +1.

Eigenvectors:

λ(1) = −1:

(A− λ(1)I)ξ(1) = 0

(A + I)ξ(1) = 0(
3 −1
3 −1

)(
ξ
(1)
1

ξ
(1)
2

)
=

(
0
0

)
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So we get the two equations:

3ξ(1)1 − ξ
(1)
2 = 0

3ξ(1)1 − ξ
(1)
2 = 0

These are the same equation. So we have 1 equation with 2 unknowns.
Choose ξ(1)2 to be arbitrary. Set ξ(1)2 = 3.
Therefore, ξ(1)1 = 1

3ξ
(1)
2 = 1.

ξ(1) =
(

1
3

)
is eigenvector associated with the eigenvalue λ(1) = −1.

A solution of the system of differential equations is x(1) =
(

1
3

)
e−t.

λ(2) = +1:

(A− λ(2)I)ξ(2) = 0

(A− I)ξ(2) = 0(
1 −1
2 −2

)(
ξ
(2)
1

ξ
(2)
2

)
=

(
0
0

)

So we get the two equations:

ξ
(2)
1 − ξ

(2)
2 = 0

2ξ(2)1 − 2ξ(2)2 = 0

These are the same equation. So we have 1 equation with 2 unknowns.
Choose ξ(2)2 to be arbitrary. Set ξ(2)2 = 1.
Therefore, ξ(2)1 = ξ

(2)
2 = 1.

ξ(2) =
(

1
1

)
is eigenvector associated with the eigenvalue λ(2) = +1.

A solution of the system of differential equations is x(2) =
(

1
1

)
et.

The Complementary Solution:

W (x(1),x(2))(t) = det
(
x(1)(t),x(2)(t)

)
=
∣∣∣∣ e−t e3t

3e−t e3t

∣∣∣∣ = e2t − 3e2t = −2e2t 6= 0

Since the Wronskian is not zero, the two solutions we have found are linearly independent and form a
fundamental set of solutions.
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A complementary solution is therefore

x = c1x(1) + c2x(2)

= c1

(
1
3

)
e−t + c2

(
1
1

)
et

Use undetermined coefficients to find a particular solution. First, rewrite the nonhomogeneous term g(t):

g(t) =
(
et

t

)
=
(

0
1

)
t+
(

1
0

)
et

We do this so we can see what type of solution we should assume exists. Since this is a polynomial added to
an exponential, we assume a solution looks like:

x = v = at+ b + cet

where a,b, c are 2 vectors. Is any part of this included in any part of the complementary solution? Yes–the
cet appears in the complementary solution. Therefore, we know this assumed form of the solution will not
work.

Instead, let’s assume:

x = v = at+ b + ctet + det

Notice the inclusion of the last term. This is different from what we would have assumed before. We need
to find four equations in the four unknowns a,b, c,d.

Differentiate and substitute into the system of differential equations:

v = at+ b + ctet + det

v′ = a + cet + ctet + det

a + cet + ctet + det = A(at+ b + ctet + det) +
(

0
1

)
t+
(

1
0

)
et

Collect terms:

(Ab− a) + t

(
Aa +

(
0
1

))
+ et

(
Ad +

(
1
0

)
− d− c

)
+ tet (Ac− c) = 0
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And we get the four equations which must be satisfied:

Ab− a = 0 (1)

Aa +
(

0
1

)
= 0 (2)

Ad +
(

1
0

)
− d− c = 0 (3)

Ac− c = 0 (4)

Equation (2):

Aa +
(

0
1

)
= 0 −→

(
2 −1
3 −2

)(
a1

a2

)
=
(

0
−1

)

Use Cramer’s Rule:

a1 =

∣∣∣∣ 0 −1
−1 −2

∣∣∣∣∣∣∣∣ 2 −1
3 −2

∣∣∣∣ =
−1

−4 + 3
= 1, a2 =

∣∣∣∣ 2 0
3 −1

∣∣∣∣
−1

=
−2
−1

= 2,−→ a =
(

1
2

)

Equation (1):

Ab− a = 0 −→
(

2 −1
3 −2

)(
b1
b2

)
=
(

1
2

)

Use Cramer’s Rule:

b1 =

∣∣∣∣ 1 −1
2 −2

∣∣∣∣∣∣∣∣ 2 −1
3 −2

∣∣∣∣ =
−2 + 2
−1

= 0, b2 =

∣∣∣∣ 2 1
3 2

∣∣∣∣
−1

=
4− 3
−1

= −1,−→ b =
(

0
−1

)

Equation (4):

Ac− c = 0 −→ Ac = c

This means that c is an eigenvector of A with eigenvalue +1. We already worked out the eigenvectors for
A when we solved the associated homogeneous system!

λ(2) = +1, ξ(2) =
(

1
1

)
−→ c = k

(
1
1

)

for any nonzero constant k.
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Equation (3):

Ad +
(

1
0

)
− d− c = 0

(A− I)d = −
(

1
0

)
+ k

(
1
1

)
(

1 −1
3 −3

)(
d1

d2

)
=
(
k − 1

k

)

Use Cramer’s Rule:

d1 =

∣∣∣∣ k − 1 −1
k −3

∣∣∣∣∣∣∣∣ 1 −1
3 −3

∣∣∣∣ =
−3(k − 1) + k

0

Division by zero! However, as long as the numerator is zero as well, we will be alright. We will have to pick

a specific value for k. k = 3/2 makes the numerator zero, fixes c = 3
2

(
1
1

)
, and we now have the system:

(
1 −1
3 −3

)(
d1

d2

)
=
(

1/2
3/2

)

We have the two equations:

d1 − d2 = 1/2
3d1 − 3d2 = 3/2

These are the same equations. We therefore have 1 equation in 2 unknowns.
Choose d2 to be arbitrary. We could pick anything, but let’s pick d2 = −3/4. Then, d1 = 1/2 + d2 = −1/4.

d = −1
4

(
1
3

)

Therefore, a particular solution is

xp =
(

1
2

)
t−
(

0
1

)
+

3
2

(
1
1

)
tet − 1

4

(
1
3

)
et

A general solution is x = xc + xp,

x = c1x(1) + c2x(2) + xp

= c1

(
1
3

)
e−t + c2

(
1
1

)
et +

(
1
2

)
t−
(

0
1

)
+

3
2

(
1
1

)
tet − 1

4

(
1
3

)
et


	1st Order: Separable Equations
	Example

	1st Order: Integrating Factor
	Example

	1st Order: Exact Equations
	Example

	1st Order: Exact Equations with Integrating Factors
	Example

	2nd Order Homogeneous Constant Coefficient
	Real and Distinct Roots of Characteristic Equation
	Complex Conjugate Roots of Characteristic Equation
	Real Root of Multiplicity Two of Characteristic Equation
	Example
	Example

	nth Order Homogeneous Constant Coefficient
	Real and Unequal Roots
	Complex Roots
	Repeated Roots
	Example
	Example

	Reduction of Order
	Nonhomogeneous Differential Equations
	Undetermined Coefficients
	Example

	Variation of Parameters on 1st Order Equations
	Variation of Parameters on 2nd Order Equations
	Example

	Variation of Parameters on nth Order Equations
	Example

	Ordinary and Regular Singular Points
	Example

	Euler Equations
	Real Distinct Roots
	Equal roots
	Complex Roots
	Example
	Example

	Series Solution about an Ordinary Point
	Example

	Series Solution about a Regular Singular Point
	If r1, r2 are complex
	Real Roots
	If r2 =r1 and r1 - r2 is not a positive integer
	Repeated Roots r1=r2
	Roots that differ by an integer: r1-r2=N
	Example

	Systems of Differential Equations
	Basic Theory

	Homogeneous Systems with Constant Coefficients
	Example: Real Eigenvalues
	Example: Complex Eigenvalues
	Example: Repeated Eigenvalues
	Example: Repeated Eigenvalues with One Eigenvector

	Nonhomogeneous Systems with Constant Coefficients: Undetermined Coefficients
	Example


