Section 1.3

Determine the order of the given differential equation, also state whether the equation is linear or nonlinear.
Example (1.3.1) $t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+2 y=\sin t$
Second order; linear.
Example (1.3.2) $\left(1+y^{2}\right) \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+y=e^{t}$
Second order; nonlinear. This is nonlinear due to the $y^{2} \frac{d^{2} y}{d t^{2}}$ term.
Example (1.3.3) $\frac{d^{4} y}{d t^{4}}+\frac{d^{3} y}{d t^{3}}+\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+y=1$
Fourth order; linear.
Example (1.3.4) $\frac{d y}{d t}+t y^{2}=0$
First order; nonlinear. This is nonlinear due to the y^{2}.
Example (1.3.5) $\frac{d^{2} y}{d t^{2}}+\sin (t+y)=\sin t$
Second order; nonlinear. This is nonlinear due to the $\sin (t+y)$, which in nonlinear in y.
Example (1.3.6) $\frac{d^{3} y}{d t^{3}}+t \frac{d y}{d t}+\left(\cos ^{2} t\right) y=t^{3}$
Third order; linear.
Example (1.3.7) Verify that $y_{1}(t)=e^{t}$ and $y_{2}(t)=\cosh t$ are solutions of the differential equation $y^{\prime \prime}-y=0$.
To verify the solutions, we need to calculate derivatives and substitute into the differential equation.

$$
\begin{aligned}
y_{1}(t) & =e^{t} \\
y_{1}^{\prime}(t) & =e^{t} \\
y_{1}^{\prime \prime}(t) & =e^{t}
\end{aligned}
$$

We have

$$
y_{1}^{\prime \prime}-y_{1}=e^{t}-e^{t}=0
$$

Therefore, $y_{1}(t)=e^{t}$ satisfies the differential equation.

$$
\begin{aligned}
y_{2}(t) & =\cosh t \\
y_{2}^{\prime}(t) & =\sinh t \\
y_{2}^{\prime \prime}(t) & =\cosh t
\end{aligned}
$$

We have

$$
y_{2}^{\prime \prime}-y_{2}=\cosh t-\cosh t=0
$$

Therefore, $y_{2}(t)=\cosh t$ satisfies the differential equation.

Example (1.3.14) Verify that $y=e^{t^{2}} \int_{0}^{t} e^{-s^{2}} d s+e^{t^{2}}$ is a solution of the differential equation $y^{\prime}-2 t y=1$.
To verify the solution, we need to calculate derivatives and substitute into the differential equation.

$$
\begin{aligned}
y & =e^{t^{2}} \int_{0}^{t} e^{-s^{2}} d s+e^{t^{2}} \\
y^{\prime} & =\frac{d}{d t}\left[e^{t^{2}} \int_{0}^{t} e^{-s^{2}} d s+e^{t^{2}}\right] \\
& =e^{t^{2}} \frac{d}{d t}\left[\int_{0}^{t} e^{-s^{2}} d s\right]+\frac{d}{d t}\left[e^{t^{2}}\right] \int_{0}^{t} e^{-s^{2}} d s+\frac{d}{d t}\left[e^{t^{2}}\right] \\
& =e^{t^{2}}\left[e^{-t^{2}}\right]+\left[2 t e^{t^{2}}\right] \int_{0}^{t} e^{-s^{2}} d s+\left[2 t e^{t^{2}}\right] \\
& =1+2 t e^{t^{2}} \int_{0}^{t} e^{-s^{2}} d s+2 t e^{t^{2}}
\end{aligned}
$$

We have

$$
y^{\prime \prime}-2 t y=1+2 t e^{t^{2}} \int_{0}^{t} e^{-s^{2}} d s+2 t e^{t^{2}}-2 t\left(e^{t^{2}} \int_{0}^{t} e^{-s^{2}} d s+e^{t^{2}}\right)=1
$$

Therefore, $y=e^{t^{2}} \int_{0}^{t} e^{-s^{2}} d s+e^{t^{2}}$ satisfies the differential equation.

