Section 2.2

Example (2.2.1) Solve the differential equation $y^{\prime}=x^{2} / y$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{x^{2}}{y} \\
y d y & =x^{2} d x \\
\int y d y & =\int x^{2} d x \\
\frac{y^{2}}{2} & =\frac{x^{3}}{3}+c
\end{aligned}
$$

This is an implicit solution for y.
Example (2.2.4) Solve the differential equation $y^{\prime}=\left(3 x^{2}-1\right) /(3+2 y)$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{3 x^{2}-1}{3+2 y} \\
(3+2 y) d y & =\left(3 x^{2}-1\right) d x \\
\int(3+2 y) d y & =\int\left(3 x^{2}-1\right) d x \\
3 y+y^{2} & =x^{3}-x+c
\end{aligned}
$$

This is an implicit solution for y.
Example (2.2.24) Solve the initial value problem $y^{\prime}=\left(2-e^{x}\right) /(3+2 y), y(0)=0$ and determine where the solution attains its maximum value.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2-e^{x}}{3+2 y} \\
(3+2 y) d y & =\left(2-e^{x}\right) d x \\
\int(3+2 y) d y & =\int\left(2-e^{x}\right) d x \\
3 y+y^{2} & =2 x-e^{x}+c
\end{aligned}
$$

We use the initial condition $y(0)=0$ to determine the constant c. When $x=0, y=0$:

$$
\begin{aligned}
0 & =-1+c \\
c & =1
\end{aligned}
$$

The implicit solution to the initial value problem is $3 y+y^{2}=2 x-e^{x}+1$.
The maximum occurs when $y^{\prime}=0$. Implicitly differentiate:

$$
\begin{aligned}
\frac{d}{d x}\left[3 y+y^{2}\right. & \left.=2 x-e^{x}+c\right] \\
3 \frac{d y}{d x}+2 y \frac{d y}{d x} & =2-e^{x}
\end{aligned}
$$

$$
\begin{array}{r}
\quad 0=2-e^{x} \\
e^{x}=2 \\
x=\ln 2
\end{array}
$$

This is where the maximum occurs.

