Section 3.1

Example (3.1.1) Find the general solution of the differential equation $y^{\prime \prime}+2 y^{\prime}-3 y=0$.
This is a constant coefficient equation. Therefore, we assume that a solution of the form $y=e^{r t}$ exists.

$$
\begin{aligned}
y & =e^{r t} \\
y^{\prime} & =r e^{r t} \\
y^{\prime \prime} & =r^{2} e^{r t}
\end{aligned}
$$

Substitute into the original equation:

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0 \longrightarrow\left(r^{2}+2 r-3\right) e^{r t}=0
$$

Then r must be a root of the characteristic equation:

$$
r^{2}+2 r-3=(r+3)(r-1)=0 \longrightarrow r_{1}=-3, r_{2}=+1
$$

so the general solution is

$$
y(t)=\sum_{i=1}^{2} c_{i} e^{r_{i} t}=c_{1} e^{-3 t}+c_{2} e^{t}
$$

Example (3.1.5) Find the general solution of the differential equation $y^{\prime \prime}+5 y^{\prime}=0$.
This is a constant coefficient equation. Therefore, we assume that a solution of the form $y=e^{r t}$ exists.

$$
\begin{aligned}
y & =e^{r t} \\
y^{\prime} & =r e^{r t} \\
y^{\prime \prime} & =r^{2} e^{r t}
\end{aligned}
$$

Substitute into the original equation:

$$
y^{\prime \prime}+5 y^{\prime}=0 \longrightarrow\left(r^{2}+5 r\right) e^{r t}=0
$$

Then r must be a root of the characteristic equation:

$$
r^{2}+5 r=r(r+5)=0 \longrightarrow r_{1}=0, r_{2}=-5
$$

so the general solution is

$$
y(t)=\sum_{i=1}^{2} c_{i} e^{r_{i} t}=c_{1}+c_{2} e^{-5 t}
$$

Example (3.1.7) Find the general solution of the differential equation $y^{\prime \prime}-9 y^{\prime}+9 y=0$.
This is a constant coefficient equation. Therefore, we assume that a solution of the form $y=e^{r t}$ exists.

$$
\begin{aligned}
y & =e^{r t} \\
y^{\prime} & =r e^{r t} \\
y^{\prime \prime} & =r^{2} e^{r t}
\end{aligned}
$$

Substitute into the original equation:

$$
y^{\prime \prime}-9 y^{\prime}+9 y=0 \longrightarrow\left(r^{2}-9 r+9\right) e^{r t}=0
$$

Then r must be a root of the characteristic equation:

$$
r^{2}-9 r+r=0
$$

Use the quadratic formula to find the solution:

$$
\begin{aligned}
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{9 \pm \sqrt{81-36}}{2} \\
& =\frac{9 \pm 3 \sqrt{5}}{2}
\end{aligned}
$$

Two solutions are

$$
y_{1}(t)=\exp \left(\left[\frac{9+3 \sqrt{5}}{2}\right] t\right), \quad y_{2}(t)=\exp \left(\left[\frac{9-3 \sqrt{5}}{2}\right] t\right)
$$

so the general solution is

$$
y(t)=\sum_{i=1}^{2} c_{i} y_{i}(t)=c_{1} \exp \left(\left[\frac{9+3 \sqrt{5}}{2}\right] t\right)+c_{2} \exp \left(\left[\frac{9-3 \sqrt{5}}{2}\right] t\right)
$$

Example (3.1.9) Find the solution to the initial value problem $y^{\prime \prime}+y^{\prime}-2 y=0, y(0)=1, y^{\prime}(0)=1$. Sketch the solution and describe its behaviour as t increases.
This is a constant coefficient equation. Therefore, we assume that a solution of the form $y=e^{r t}$ exists.

$$
\begin{aligned}
y & =e^{r t} \\
y^{\prime} & =r e^{r t} \\
y^{\prime \prime} & =r^{2} e^{r t}
\end{aligned}
$$

Substitute into the original equation:

$$
y^{\prime \prime}+y^{\prime}-2 y=0 \longrightarrow\left(r^{2}+r-2\right) e^{r t}=0
$$

Then r must be a root of the characteristic equation:

$$
r^{2}+r-2=(r+2)(r-1)=0 \longrightarrow r_{1}=-2, r_{2}=+1
$$

Two solutions are

$$
y_{1}(t)=e^{-2 t}, \quad y_{2}(t)=e^{t}
$$

so the general solution is

$$
y(t)=\sum_{i=1}^{2} c_{i} y_{i}(t)=c_{1} e^{-2 t}+c_{2} e^{t}
$$

Use the initial conditions to determine the constants c_{1} and c_{2}.

$$
\begin{aligned}
y(t) & =c_{1} e^{-2 t}+c_{2} e^{t} \\
y^{\prime}(t) & =-2 c_{1} e^{-2 t}+c_{2} e^{t} \\
y(0) & =c_{1}+c_{2}=1 \\
y^{\prime}(0) & =-2 c_{1}+c_{2}=1
\end{aligned}
$$

We can use Cramer's rule to solve the two equations in two unknowns:

$$
c_{1}=\frac{\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|}{\left|\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right|}=\frac{0}{3}=0, \quad c_{2}=\frac{\left|\begin{array}{rr}
1 & 1 \\
-2 & 1
\end{array}\right|}{3}=\frac{3}{3}=1
$$

The initial value problem has solution $y(t)=e^{t}$. You can sketch this by hand. It is an exponential function, so it will increase exponentially as t increases.

