Section 3.3

Example (3.3.1) Use Euler's formula to write $e^{1+2 i}$ in the form $a+i b$.

$$
\begin{aligned}
e^{1+2 i} & =e^{1} e^{2 i} \\
& =e(\cos 2+i \sin 2) \\
& =e \cos 2+i e \sin 2)
\end{aligned}
$$

Example (3.3.3) Use Euler's formula to write $e^{i \pi}$ in the form $a+i b$.

$$
\begin{aligned}
e^{i \pi} & =\cos \pi+i \sin \pi \\
& =-1
\end{aligned}
$$

Example (3.3.7) Find the general solution of the differential equation $y^{\prime \prime}-2 y^{\prime}+2 y=0$.
This is a constant coefficient equation. Therefore, we assume that a solution of the form $y=e^{r t}$ exists.

$$
\begin{aligned}
y & =e^{r t} \\
y^{\prime} & =r e^{r t} \\
y^{\prime \prime} & =r^{2} e^{r t}
\end{aligned}
$$

Substitute into the original equation:

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0 \longrightarrow\left(r^{2}-2 r+2\right) e^{r t}=0
$$

Then r must be a root of the characteristic equation:

$$
r^{2}-2 r+2=0
$$

Use the quadratic formula to find the solution:

$$
\begin{aligned}
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{2 \pm \sqrt{4-8}}{2} \\
& =\frac{2 \pm 2 \sqrt{-1}}{2} \\
& =1 \pm i=\lambda \pm \mu i
\end{aligned}
$$

So $\lambda=1, \mu=1$. Two linearly independent solutions are

$$
y_{1}(t)=e^{\lambda t} \cos \mu t=e^{t} \cos t, \quad y_{2}(t)=e^{\lambda t} \sin \mu t=e^{t} \sin t
$$

so the general solution is

$$
y(t)=\sum_{i=1}^{2} c_{i} y_{i}(t)=c_{1} e^{t} \cos t+c_{2} e^{t} \sin t
$$

Example (3.3.17) Find the solution of the initial value problem $y^{\prime \prime}+4 y=0, y(0)=0, y^{\prime}(0)=1$.
This is a constant coefficient equation. Therefore, we assume that a solution of the form $y=e^{r t}$ exists.

$$
\begin{aligned}
y & =e^{r t} \\
y^{\prime} & =r e^{r t} \\
y^{\prime \prime} & =r^{2} e^{r t}
\end{aligned}
$$

Substitute into the original equation:

$$
y^{\prime \prime}+4 y=0 \longrightarrow\left(r^{2}+4\right) e^{r t}=0
$$

Then r must be a root of the characteristic equation:

$$
r^{2}+4=0 \longrightarrow r_{1,2}= \pm 2 i=\lambda+\mu i
$$

So $\lambda=0, \mu=2$. Two linearly independent solutions are

$$
y_{1}(t)=e^{\lambda t} \cos \mu t=\cos 2 t, \quad y_{2}(t)=e^{\lambda t} \sin \mu t=\sin 2 t
$$

so the general solution is

$$
y(t)=\sum_{i=1}^{2} c_{i} y_{i}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t
$$

Use the initial conditions to determine the constants c_{1} and c_{2}.

$$
\begin{aligned}
y(t) & =c_{1} \cos 2 t+c_{2} \sin 2 t \\
y^{\prime}(t) & =-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t \\
y(0) & =c_{1}=0 \\
y^{\prime}(0) & =+2 c_{2}=1 \longrightarrow c_{2}=1 / 2
\end{aligned}
$$

The initial value problem has solution $y(t)=\frac{1}{2} \sin 2 t$. You can sketch this by hand. It is a sinusoid function, so it will increase oscillate with period π and amplitude $1 / 2$.

