Section 3.4

Example (3.4.6) Find a general solution of the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$.
Since this is a constant coefficient differential equation, we assume the solution looks like $y=e^{r t}$. Then:

$$
y=e^{r t}, \quad y^{\prime}=r e^{r t}, \quad y^{\prime \prime}=r^{2} e^{r t}
$$

Substitute into the differential equation:

$$
\begin{aligned}
y^{\prime \prime}-6 y^{\prime}+9 y & =0 \\
\left(r^{2}-6 r+9\right) e^{r t} & =0 \\
r^{2}-6 r+9 & =0 \\
(r-3)^{2} & =0
\end{aligned}
$$

The root of the characteristic equation is $r=3$ of multiplicity 2 .
A fundamental set of solutions is therefore

$$
y_{1}=e^{3 t}, \quad y_{2}=t e^{3 t}
$$

The general solution is therefore

$$
y(t)=\sum_{i=1}^{2} c_{i} y_{i}=c_{1} e^{3 t}+c_{2} t e^{3 t}
$$

Example (3.5.7) Find a general solution of the differential equation $4 y^{\prime \prime}+17 y^{\prime}+4 y=0$.
Since this is a constant coefficient differential equation, we assume the solution looks like $y=e^{r t}$. Then:

$$
y=e^{r t}, \quad y^{\prime}=r e^{r t}, \quad y^{\prime \prime}=r^{2} e^{r t}
$$

Substitute into the differential equation:

$$
\begin{aligned}
4 y^{\prime \prime}+17 y^{\prime}+4 y & =0 \\
\left(4 r^{2}+17 r+4\right) e^{r t} & =0 \\
4 r^{2}+17 r+4 & =0 \quad \text { characteristic equation } \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-17 \pm \sqrt{289-64}}{8} \\
& =-\frac{1}{4},-4
\end{aligned}
$$

The roots of the characteristic equation are $r_{1}=-1 / 4$, and $r_{2}=-4$.
A fundamental set of solutions is therefore

$$
y_{1}=e^{-t / 4}, \quad y_{2}=e^{-4 t}
$$

The general solution is therefore

$$
y(t)=\sum_{i=1}^{2} c_{i} y_{i}=c_{1} e^{-t / 4}+c_{2} e^{-4 t}
$$

Example (3.4.11) Solve the initial value problem $9 y^{\prime \prime}-12 y^{\prime}+4 y=0, y(0)=2, y^{\prime}(0)=-1$. Sketch the graph of the solution and describe the behaviour of the solution as $t \rightarrow \infty$.

Since this is a constant coefficient differential equation, we assume the solution looks like $y=e^{r t}$. Then:

$$
y=e^{r t}, \quad y^{\prime}=r e^{r t}, \quad y^{\prime \prime}=r^{2} e^{r t}
$$

Substitute into the differential equation:

$$
\begin{aligned}
9 y^{\prime \prime}-12 y^{\prime}+4 y & =0 \\
\left(9 r^{2}-12 r+4\right) e^{r t} & =0 \\
9 r^{2}-12 r+4 & =0 \quad \text { characteristic equation } \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{12 \pm \sqrt{144-144}}{18} \\
& =\frac{2}{3}
\end{aligned}
$$

The root of the characteristic equation is $r=2 / 3$ of multiplicity 2 .
A fundamental set of solutions is therefore

$$
y_{1}=e^{2 t / 3}, \quad y_{2}=t e^{2 t / 3}
$$

The general solution is therefore

$$
y(t)=\sum_{i=1}^{2} c_{i} y_{i}=c_{1} e^{2 t / 3}+c_{2} t e^{2 t / 3}
$$

Use the initial conditions to determine the constants:

$$
\begin{aligned}
y(t) & =c_{1} e^{2 t / 3}+c_{2} t e^{2 t / 3} \\
y^{\prime}(t) & =c_{1} \cdot \frac{2}{3} e^{2 t / 3}+c_{2} e^{2 t / 3}+c_{2} \cdot \frac{2}{3} t e^{2 t / 3} \\
y(0) & =2=c_{1} \\
y^{\prime}(0) & =-1=c_{1} \cdot \frac{2}{3}+c_{2}
\end{aligned}
$$

The solution is $c_{1}=2$ and $c_{2}=-7 / 3$.
The initial value problem has solution $y(t)=2 e^{2 t / 3}-\frac{7}{3} t e^{2 t / 3}$.
As $t \rightarrow \infty$ the solution decreases without bound, since $y^{\prime}(t)=-\frac{1}{9} e^{2 t / 3}(9+14 t)<0$ for all values of $t>0$ (remember, the first derivative tells you if a function is increasing or decreasing).
See the associated Mathematica file for a sketch.
Example (3.4.16) Solve the initial value problem $y^{\prime \prime}-y^{\prime}+y / 4=0, y(0)=2, y^{\prime}(0)=b$.
Determine the critical value of b that separates solutions that grow positively from those that eventually grow negatively.
Since this is a constant coefficient differential equation, we assume the solution looks like $y=e^{r t}$. Then:

$$
y=e^{r t}, \quad y^{\prime}=r e^{r t}, \quad y^{\prime \prime}=r^{2} e^{r t} .
$$

Substitute into the differential equation:

$$
\begin{aligned}
y^{\prime \prime}-y^{\prime}+y / 4 & =0 \\
\left(r^{2}-r+1 / 44\right) e^{r t} & =0 \\
r^{2}-r+1 / 4 & =0 \quad \text { characteristic equation } \\
r & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{1 \pm \sqrt{1-1}}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

The root of the characteristic equation is $r=1 / 2$ of multiplicity 2 .
A fundamental set of solutions is therefore

$$
y_{1}=e^{t / 2}, \quad y_{2}=t e^{t / 2}
$$

The general solution is therefore

$$
y(t)=\sum_{i=1}^{2} c_{i} y_{i}=c_{1} e^{t / 2}+c_{2} t e^{t / 2}
$$

Use the initial conditions to determine the constants:

$$
\begin{aligned}
y(t) & =c_{1} e^{t / 2}+c_{2} t e^{t / 2} \\
y^{\prime}(t) & =c_{1} \cdot \frac{1}{2} e^{t / 2}+c_{2} e^{t / 2}+c_{2} \cdot \frac{1}{2} t e^{t / 2} \\
y(0) & =2=c_{1} \\
y^{\prime}(0) & =b=c_{1} \cdot \frac{1}{2}+c_{2}
\end{aligned}
$$

The solution is $c_{1}=2$ and $c_{2}=b-1$.
The initial value problem has solution $y(t)=2 e^{t / 2}+(b-1) t e^{t / 2}=e^{t / 2}[2+(b-1) t]$.
If $b>1$, the solution will grow positively as $t \rightarrow \infty$. If $b<1$, the solution will grow negatively as $t \rightarrow \infty$. The value of b which separates the two types of behaviour is $b=1$.
See the Mathematica file for some sketches.
Example (3.4.20) Consider the differential equation $y^{\prime \prime}+2 a y^{\prime}+a^{2} y=0$. Show that one solution is $y_{1}(t)=e^{-a t}$ by working through the characteristic equation solution. Then, use Abel's formula to show a second solution to the differential equation is $y_{2}(t)=t e^{-a t}$.
Since this is a constant coefficient differential equation, we assume the solution looks like $y=e^{r t}$. Then:

$$
y=e^{r t}, \quad y^{\prime}=r e^{r t}, \quad y^{\prime \prime}=r^{2} e^{r t}
$$

Substitute into the differential equation:

$$
\begin{aligned}
y^{\prime \prime}+2 a y^{\prime}+a^{2} y & =0 \\
\left(r^{2}+2 a r+a^{2}\right) e^{r t} & =0 \\
r^{2}+2 a r+a^{2} & =0 \quad \text { characteristic equation } \\
(r+a)^{2} & =0
\end{aligned}
$$

The root of the characteristic equation is $r=-a$ of multiplicity 2 .
One solution of the differential equation is of the form $y_{1}(t)=e^{-a t}$.
Abels' Theorem tells us $W\left(y_{1}, y_{2}\right)(t)=c_{1} \exp \left(-\int p(t) d t\right)$. Therefore,

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(t) & =c_{1} \exp \left(-\int p(t) d t\right) \\
& =c_{1} \exp \left(-\int 2 a d t\right) \\
& =c_{1} e^{-2 a t} \\
& =y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) \quad \text { by definition }
\end{aligned}
$$

Take $y_{1}(t)=e^{-a t}$, the solution we already know. Taking the derivative and substituting into the differential equation $c_{1} e^{-2 a t}=v y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$, we arrive at the following first order, linear differential equation in y_{2} :

$$
y_{2}^{\prime}+a y_{2}=c_{1} e^{-a t}
$$

This can be solved using the integrating factor technique. Multiply by a function $\mu=\mu(t)$:

$$
\mu y_{2}^{\prime}+\mu a y_{2}=\mu c_{1} e^{-a t}
$$

Now, we want the following to be true:

$$
\begin{align*}
\frac{d}{d t}\left[\mu y_{2}\right] & =\mu y_{2}^{\prime}+\mu^{\prime} y_{2} \quad \text { (by the product rule) } \tag{1}\\
& =\mu y_{2}^{\prime}+\frac{2 \mu}{3} y_{2} \quad \text { (the left hand side of our equation) } \tag{2}
\end{align*}
$$

Comparing Eqs. (1) and (2), we arrive at the differential equation that the integrating factor must solve:

$$
\mu a=\mu^{\prime}
$$

This differential equation is separable, so the solution is

$$
\begin{aligned}
\mu a & =\frac{d \mu}{d t} \\
\int a d t & =\int \frac{d \mu}{\mu} \\
\int a d t & =\int \frac{d \mu}{\mu} \\
a t+c_{2} & =\ln |\mu| \\
e^{a t} e^{c_{2}} & =|\mu| \\
\mu & =c_{3} e^{a t} \quad \text { where } c_{3}=+e^{c_{2}}
\end{aligned}
$$

Therefore, the original differential equation becomes

$$
\begin{aligned}
\mu y_{2}^{\prime}+\mu a y_{2} & =\mu c_{1} e^{-a t} \\
c_{3} e^{a t} y_{2}^{\prime}+c_{3} e^{a t} a y_{2} & =c_{3} e^{a t} c_{1} e^{-a t} \\
e^{a t} y_{2}^{\prime}+e^{a t} a y_{2} & =c_{1} \\
\frac{d}{d t}\left[e^{a t} y_{2}\right] & =c_{1}
\end{aligned}
$$

$$
\begin{aligned}
\int d\left[e^{a t} y_{2}\right] & =\int c_{1} d t \\
e^{a t} y_{2} & =c_{1} t+c_{4} \\
y_{2} & =c_{1} t e^{-a t}+c_{4} e^{-a t}
\end{aligned}
$$

So a second solution is $y_{2}(t)=c_{1} t e^{-a t}+c_{4} e^{-a t}$. Since we are usually interested in a fundamental set of solutions, which will have no constants and no overlap between them, we can choose a fundamental set of solutions to be:

$$
y_{1}(t)=e^{-a t}, \text { and } y_{3}(t)=t e^{-a t} .
$$

This verifies the result we saw in class using a completely different method. We you can see things in two different ways that's a great thing! And on your assignment you will see a third way, which is very exciting indeed.

Example (3.4.23) Find a second solution of the differential equation $t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0$ given one solution is $y_{1}(t)=t^{2}$.
First, note that this is not a constant coefficient differential equation, so we cannot assume the solution looks like $y=e^{r t}$. In fact, this is an Euler equation, which we will study in Section 5.5. You might want to try to use a solution like $y=e^{r t}$ and see what goes wrong as you attempt to get the characteristic equation.
To use reduction of order, we assume a second soloution looks like $y=v(t) y_{1}(t)=v y_{1}=v t^{2}$. When you know the second solution, it is a good idea to put it in right away.

$$
\begin{aligned}
y(t) & =v t^{2} \\
y^{\prime}(t) & =v^{\prime} t^{2}+2 v t \\
y^{\prime \prime}(t) & =v^{\prime \prime} t^{2}+4 v^{\prime} t+2 v
\end{aligned}
$$

Substitute into the differential equation:

$$
\begin{aligned}
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y & =0 \\
t^{2}\left(v^{\prime \prime} t^{2}+4 v^{\prime} t+2 v\right)-4 t\left(v^{\prime} t^{2}+2 v t\right)+6\left(v t^{2}\right) & =0 \\
v^{\prime \prime} t^{4} & =0 \\
v^{\prime \prime} & =0 \text { since } t>0 \\
\frac{d v^{\prime}}{d t} & =0 \\
\int d\left[v^{\prime}\right] & =0 \\
v^{\prime}+c_{1} & =0 \\
\frac{d v}{d t} & =-c_{1} \\
\int d v & =-c_{1} \int d t \\
v=c_{2}-c_{1} t &
\end{aligned}
$$

Sometimes you have to use the integrating factor technique to determine v.
A second solution to the differential equation is $y(t)=v t^{2}=c_{2} t^{2}-c_{1} t^{3}$.
From this we can identitify a fundamental set of solutions as $y_{1}(t)=t^{2}$ and $y_{2}(t)=t^{3}$.
A general solution is $y(t)=k_{1} t^{2}+k_{2} t^{3}$.

