
Differential Equations Homework: Mechanical and Electrical Vibrations Page 1

Section 3.7

Example (3.7.1) Determine ω0, R, and δ so u = 3 cos 2t + 4 sin 2t = R cos(ω0t− δ).

Let’s work this through from first principles, rather than just using formulas.

u = R cos(ω0t− δ)
= R cos ω0t cos δ + R sinω0t sin δ (basic trig identity for cosine of a difference)
= 3 cos 2t + 4 sin 2t

Comparing, we have

ω0 = 2
R cos δ = 3
R sin δ = 4

A bit of algebra leads to

R2 cos2 δ + R2 sin2 δ = R2 = 32 + 42 = 25 −→ R = 5,

R sin δ

R cos δ
= tan δ =

4
3
−→ δ = arctan(4/3).

Therefore, u = 3 cos 2t + 4 sin 2t = 5 cos(2t− arctan(4/3)).

Example (3.7.6) A mass of 100g stretches a spring 5cm. If the mass is set in motion from its equilibrium position with
a downward velocity of 10 cm/sec, and if there is no damping, determine the position of the mass at any time t. When
does the mass first return to its equilibrium position?

We can use the equation of motion which was derived in class:

mu′′(t) + γu′(t) + ku(t) = F (t).

where m is the mass, γ is the damping constant, k is the spring constant, F (t) is the driving force, and u(t) is the
displacement.

No damping means γ = 0. No external force means F (t) = 0. The mass is m = 1000g. The spring constant is
k = mg/L = 1000g × 980cm/s2/5cm = 19600g/s2. Let’s solve the differential equation, which is

mu′′(t) + ku(t) = 0.

Since this is a constant coefficient differential equation, we can assume a solution looks like u = ert. Then

u = ert, u′ = rert, u′′ = r2ert.

Substitute into the differential equation:

mu′′(t) + ku(t) = 0
(mr2 + k)ert = 0

r2 = − k

m

The mass and spring constant are both positive numbers, so r will be complex valued, r = ±
√

k/m i. The roots of
the characteristic equation are r1 = +

√
k/m i and r2 = −

√
k/m i, complex conjugates with λ = 0 and µ =

√
k/m.
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A fundamental set of solutions to the associated homogeneous equation is u1(t) = eλt cos µt = cos
√

k/mt and u2(t) =
eλt sinµt = sin

√
k/mt. The solution to the differential equation, with t in seconds and u in cm, is

u(t)
2∑

i=1

ciui(t) = c1 cos
√

k/mt + c2 sin
√

k/mt = c1 cos 14t + c2 sin 14t,

since
√

k/m = 14s−1.

The initial conditions for this case are u(0) = 0 and u′(0) = 10 cm/s.

u(t) = c1 cos 14t + c2 sin 14t

u′(t) = −14c1 sin 14t + 14c2 cos 14t

u(0) = 0 = c1

u′(0) = 10 = 14c2

Therefore, c1 = 0 and c2 = 5/7.

The solution to the system is u(t) = 5/7 sin 14t.

The first return to equilibrium is when u(0) = 5/7 sin 14t = 0, or sin 14t = 0. The mass is at equilibrium for 14t = πn,
n = 0, 1, 2, 3, . . ..

t = 0: equilibrium position.

t = π/14: equilibrium position, velocity opposite sign of initial velocity.

t = π/7: equilibrium position, velocity same sign as initial velocity.

Example (3.7.11) A spring is stretched 10cm by a force of 3N. A mass of 2kg is hung from the spring and is also attached
to a viscous damper that exerts a force of 3N when the velocity of the mass is 5m/s. If the mass is pulled down 5cm below
its equilibrium position and given an initial downward velocity of 10 cm/s, determine its position at any time t. Find the
quasi frequency µ and the ratio of µ to the natural frequency of the corresponding undamped motion.

We can use the equation of motion which was derived in class:

mu′′(t) + γu′(t) + ku(t) = F (t).

where m is the mass, γ is the damping constant, k is the spring constant, F (t) is the driving force, and u(t) is the
displacement.

No external force means F (t) = 0. The mass is m = 2kg.

The spring constant is k = mg/L = 3N/0.1m = 30kg/s2.

Viscous damping means Fd = −γu′(t), or −3N = −γ5m/s, which yields γ = 3/5 kg/s.

The initial conditions are u(0) = 0.05m and u′(0) = 0.1m/s.

The initial value problem which models this situation is

2u′′(t) +
3
5
u′(t) + 30u(t) = 0, u(0) =

1
20

, u′(0) =
1
10

.

Let’s solve the differential equation, where t is in seconds and u in meters, which is

2u′′(t) +
3
5
u′(t) + 30u(t) = 0.
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Since this is a constant coefficient differential equation, we can assume a solution looks like u = ert. Then

u = ert, u′ = rert, u′′ = r2ert.

Substitute into the differential equation:

2u′′(t) +
3
5
u′(t) + 30u(t) = 0

(2r2 + 3r/5 + 30)ert = 0
2r2 + 3r/5 + 30 = 0

The roots are complex, r = −3/20±
√

5991/20 i.

The solution to the differential equation, with t in seconds and u in cm, is

u(t)
2∑

i=1

ciui(t) = c1e
−3t/20 cos

√
5991t/20 + c2e

−3t/20 sin
√

5991t/20.

Let’s, for a change, use Mathematica to solve for the constants using the initial conditions (it would be tedious to write
out by hand). The Mathematica file contains the details. We find c1 = 1/20 and c2 = 43/(20

√
5991).

The solution to the initial value problem is

u(t) =
1
20

e−3t/20 cos

(√
5991t

20

)
+

43
20
√

5991
e−3t/20 sin

(√
5991t

20

)
.

To get the quasi-frequency, we need to identify the ω0. Referring to the results from Problem 3.8.1, we can easily identify
ω0 =

√
5991
20 . The quasi-frequency is therefore

µ =
(

1− γ2

4km

)1/2

ω0 =
(

1− (3/5)2

4(30)(2)

)1/2 √5991
20

=
1997

√
3/5

400
∼ 3.86717rad/s.

The ratio of the quasi-frequency to the natural frequency is

µ

ω0
=

3997
4000

∼ 0.99925.


