Section 4.2: Homogeneous Equations with Constant Coefficients

Examples (4.2.1) (4.2.3) and (4.2.4) See Mathematica file.
Example (4.2.8) Find the square root of the complex number $1-i$.
From the Mathematica file we see that we have $1-i=\sqrt{2} \exp (i(7 \pi / 4+2 \pi m)), m=\ldots,-2,-1,0,1,2, \ldots$

$$
\begin{aligned}
(1-i)^{1 / 2} & =(\sqrt{2} \exp (i(7 \pi / 4+2 \pi m)))^{1 / 2} \\
& =2^{1 / 4} \exp (i(7 \pi / 8+\pi m)) \\
& =2^{1 / 4} \exp (i(7 \pi / 8+\pi(0))) \text { or } 2^{1 / 4} \exp (i(7 \pi / 8+\pi(1))) \quad \text { other } m \text { produce these same two values } \\
& =2^{1 / 4} \exp (7 \pi i / 8) \text { or } 2^{1 / 4} \exp (15 \pi i / 8) \\
& =2^{1 / 4}(\cos (7 \pi / 8)+i \sin (7 \pi / 8)) \text { or } 2^{1 / 4}(\cos (15 \pi / 8)+i \sin (15 \pi / 8))
\end{aligned}
$$

Example (4.2.11) Find the general solution of the differential equation $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation:

$$
\begin{array}{r}
y=e^{r t}, y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t}, y^{\prime \prime \prime}=r^{3} e^{r t} . \\
y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0 \\
r^{3} e^{r t}-r^{2} e^{r t}-r e^{r t}+e^{r t}=0 \\
r^{3}-r^{2}-r+1=0
\end{array}
$$

Now we need the roots of the characteristic equation. We can guess one root, and then factor it out and use the quadratic formula, or use Mathematica to get all the roots at once. We find the roots to be $r_{1}=-1$, and $r_{2}=1$ of multiplicity 2 , that is the characteristic equation can be written as

$$
(r-1)^{2}(r+1)=0
$$

Therefore, a general solution of the differential equation is $y(t)=c_{1} e^{-t}+c_{2} e^{t}+c_{3} t e^{t}$.
Example (4.2.13) Find the general solution of the differential equation $2 y^{\prime \prime \prime}-4 y^{\prime \prime}-2 y^{\prime}+4 y=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation:

$$
\begin{aligned}
y=e^{r t}, y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t}, y^{\prime \prime \prime} & =r^{3} e^{r t} . \\
2 y^{\prime \prime \prime}-4 y^{\prime \prime}-2 y^{\prime}+4 y & =0 \\
2 r^{3} e^{r t}-4 r^{2} e^{r t}-2 r e^{r t}+4 e^{r t} & =0 \\
2 r^{3}-4 r^{2}-2 r+4 & =0
\end{aligned}
$$

Now we need the roots of the characteristic equation. We can guess one root, and then factor it out and use the quadratic formula, or use Mathematica to get all the roots at once. We find the roots to be $r_{1}=1$, and $r_{2}=-1$, and $r_{3}=2$ of multiplicity 1 , that is the characteristic equation can be written as

$$
(r-1)(r+1)(r-2)=0
$$

Therefore, a general solution of the differential equation is $y(t)=c_{1} e^{-t}+c_{2} e^{-t}+c_{3} e^{2 t}$.
Example (4.2.18) Find the general solution of the differential equation $y^{(6)}-y^{\prime \prime}=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation:

$$
\begin{aligned}
& y=e^{r t}, y^{(i)}=r^{i} e^{r t} \\
& y^{(6)}-y^{\prime \prime}=0 \\
& r^{6} y^{(6)}-r^{2} e^{r t}=0 \\
& r^{2}\left(r^{4}-1\right)=0 \\
& r^{2}\left(r^{2}-1\right)\left(r^{2}+1\right)=0 \\
& \text { difference of squares } \\
& r^{2}(r-1)(r+1)(r-i)(r+i)=0
\end{aligned}
$$

Therefore, $r_{1}=1$, and $r_{2}=-1$, and $r_{3}=i$, and $r_{4}=-i$ of multiplicity one, and $r_{5}=0$ of multiplicity two. Therefore, a general solution of the differential equation is $y(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} \cos t+c_{4} \sin t+c_{5}+c_{6} t$.

