Section 4.3: Nonhomogeneous Equations with Constant Coefficients: Undetermined Coefficients

Example (4.3.1) Find the general solution of the differential equation $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=2 e^{-t}+3$.
First, solve the associated homogeneous differential equation: $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation:

$$
\begin{aligned}
& y=e^{r t}, y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t}, y^{\prime \prime \prime}=r^{3} e^{r t} . \\
& y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0 \\
& r^{3} e^{r t}-r^{2} e^{r t}-r e^{r t}+e^{r t}=0 \\
& r^{3}-r^{2}-r+1=0
\end{aligned}
$$

Now we need the roots of the characteristic equation. We can guess one root, and then factor it out and use the quadratic formula, or use Mathematica to get all the roots at once. We find the roots to be $r_{1}=-1$, and $r_{2}=1$ of multiplicity 2 , that is the characteristic equation can be written as

$$
(r-1)^{2}(r+1)=0
$$

Therefore, the complimentary solution is $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{t}+c_{3} t e^{t}$.
For undetermined coefficients, we assume a solution has the form $Y(t)=A t e^{-t}+B$. The first term was multiplied by t since $A e^{-t}$ appeared in the complimentary solution $y_{c}(t)$.

Take the derivatives and substitute into the nonhomogeneous differential equation. Although straightforward, this process can be tedious and you may prefer to have a computer algebra system assist you with the details. I will work it through by hand here.

$$
\begin{aligned}
Y(t) & =A t e^{-t}+B \\
Y^{\prime}(t) & =A e^{-t}-A t e^{-t} \\
Y^{\prime \prime}(t) & =-2 A e^{-t}+A t e^{-t} \\
Y^{\prime \prime \prime}(t) & =3 A e^{-t}-A t e^{-t} \\
y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y & =2 e^{-t}+3 \\
\left(3 A e^{-t}-A t e^{-t}\right)-\left(-2 A e^{-t}+A t e^{-t}\right)-\left(A e^{-t}-A t e^{-t}\right)+\left(A t e^{-t}+B\right) & =2 e^{-t}+3 \\
4 A e^{-t}+B & =2 e^{-t}+3
\end{aligned}
$$

So we compare coefficients, and for this to be true for all values of t, we need $4 A=2$ and $B=3$. So $A=1 / 2, B=3$.
The general solution to the nonhomogeneous differential equation is therefore $y(t)=c_{1} e^{-t}+c_{2} e^{t}+c_{3} t e^{t}+\frac{t}{2} e^{-t}+3$.
Example (4.3.4) Find the general solution of the differential equation $y^{\prime \prime \prime}-y^{\prime}=2 \sin t$.
First, solve the associated homogeneous differential equation: $y^{\prime \prime \prime}-y^{\prime}=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation:

$$
y=e^{r t}, y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t}, y^{\prime \prime \prime}=r^{3} e^{r t}
$$

$$
\begin{aligned}
y^{\prime \prime \prime}-y^{\prime} & =0 \\
r^{3} e^{r t}-r e^{r t} & =0 \\
r^{3}-r & =0 \\
r\left(r^{2}-1\right) & =0 \\
r(r-1)(r+1) & =0
\end{aligned}
$$

We find the roots to be $r_{1}=0, r_{2}=1$, and $r_{3}=-1$. Therefore, the complimentary solution is $y_{c}(t)=c_{1}+c_{2} e^{t}+c_{3} e^{-t}$. For undetermined coefficients, we assume a solution has the form $Y(t)=A \sin t+B \cos t$.
Take the derivatives and substitute into the nonhomogeneous differential equation.

$$
\begin{aligned}
Y(t) & =A \sin t+B \cos t \\
Y^{\prime}(t) & =A \cos t-B \sin t \\
Y^{\prime \prime}(t) & =-A \sin t-B \cos t \\
Y^{\prime \prime \prime}(t) & =-A \cos t+B \sin t \\
y^{\prime \prime \prime}-y^{\prime} & =2 \sin t \\
(-A \cos t+B \sin t)-(A \cos t-B \sin t) & =2 \sin t \\
2 B \sin t-2 A \cos t & =2 \sin t
\end{aligned}
$$

So we compare coefficients, and for this to be true for all values of t, we need $2 B=2$ and $2 A=0$. So $A=0, B=1$.
The general solution to the nonhomogeneous differential equation is therefore $y(t)=c_{1}+c_{2} e^{t}+c_{3} e^{-t}+\cos t$.

Section 4.4: Nonhomogeneous Equations with Constant Coefficients: Variation of Parameters

Example (4.4.1) Find the general solution of the differential equation $y^{\prime \prime \prime}+y^{\prime}=\tan t$.
First, solve the associated homogeneous differential equation: $y^{\prime \prime \prime}+y^{\prime}=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation:

$$
\begin{aligned}
& y=e^{r t}, y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t}, y^{\prime \prime \prime}=r^{3} e^{r t} \\
& y^{\prime \prime \prime}+y^{\prime}=0 \\
& r^{3}+r=0 \\
& r(r+i)(r-i)=0
\end{aligned}
$$

$r_{1}=0, r_{2}=-i$, and $r_{3}=+i$. We can group the last two solutions together as $r_{2,3}= \pm i=\lambda \pm \mu i, \lambda=0, \mu=1$. Two real valued solutions associated with these roots are $y_{2}=e^{\lambda t} \cos \mu t=\cos t$, and $y_{3}=e^{\lambda t} \sin \mu t=\sin t$.
Therefore, the complimentary solution is $y_{c}(t)=c_{1}+c_{2} \cos t+c_{3} \sin t$.
Using variation of parameters (undetermined coefficients will not work in this case), we assume a solution of the nonhomogeneous differential equation looks like

$$
Y(t)=\mu_{1}(t)+\mu_{2}(t) \cos t+\mu_{3}(t) \sin t=\mu_{1}+\mu_{2} \cos t+\mu_{3} \sin t
$$

Take the derivative:

$$
Y^{\prime}(t)=\mu_{1}^{\prime}+\mu_{2}^{\prime} \cos t+\mu_{3}^{\prime} \sin t-\mu_{2} \sin t+\mu_{3} \cos t
$$

Assume (this is a condition we impose on the problem):

$$
\begin{equation*}
\mu_{1}^{\prime}+\mu_{2}^{\prime} \cos t+\mu_{3}^{\prime} \sin t=0 \tag{1}
\end{equation*}
$$

Therefore,

$$
Y^{\prime}(t)=-\mu_{2} \sin t+\mu_{3} \cos t
$$

Differentiate:

$$
Y^{\prime \prime}(t)=-\mu_{2}^{\prime} \sin t+\mu_{3}^{\prime} \cos t-\mu_{2} \cos t-\mu_{3} \sin t
$$

Assume (this is the second condition we impose on the problem):

$$
\begin{equation*}
-\mu_{2}^{\prime} \sin t+\mu_{3}^{\prime} \cos t=0 \tag{2}
\end{equation*}
$$

Therefore,

$$
Y^{\prime \prime}(t)=-\mu_{2} \cos t-\mu_{3} \sin t
$$

Differentiate:

$$
Y^{\prime \prime \prime}(t)=-\mu_{2}^{\prime} \cos t-\mu_{3}^{\prime} \sin t+\mu_{2} \sin t-\mu_{3} \cos t
$$

Substitute into the differential equation, and simplify:

$$
\begin{align*}
y^{\prime \prime \prime}+y^{\prime} & =\tan t \\
\left(-\mu_{2}^{\prime} \cos t-\mu_{3}^{\prime} \sin t+\mu_{2} \sin t-\mu_{3} \cos t\right)+\left(-\mu_{2} \sin t+\mu_{3} \cos t\right) & =\tan t \\
-\mu_{2}^{\prime} \cos t-\mu_{3}^{\prime} \sin t & =\tan t \tag{3}
\end{align*}
$$

If the μ_{i} do not cancel out at this stage, you have made an error!
Equations (1)-(3) form three equations in the three unknowns $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \mu_{3}^{\prime}$. There are rewritten here so we can use Cramer's rule to solve the system:

$$
\begin{aligned}
& \mu_{1}^{\prime}+\mu_{2}^{\prime} \cos t+\mu_{3}^{\prime} \sin t=0 \\
& -\mu_{2}^{\prime} \sin t+\mu_{3}^{\prime} \cos t=0 \\
& -\mu_{2}^{\prime} \cos t-\mu_{3}^{\prime} \sin t=\tan t \\
& \mu_{1}^{\prime}=\frac{\left|\begin{array}{ccc}
0 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
\tan t & -\cos t & -\sin t
\end{array}\right|}{\left|\begin{array}{ccc}
1 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
0 & -\cos t & -\sin t
\end{array}\right|}=\frac{\tan t}{1}=\tan t \\
& \mu_{1}=\int \tan t d t=-\ln |\cos t|=\ln |\sec t| .
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{2}^{\prime}=\frac{\left|\begin{array}{ccc}
1 & 0 & \sin t \\
0 & 0 & \cos t \\
0 & \tan t & -\sin t
\end{array}\right|}{1}=-\tan t \cos t \\
& \mu_{2}=-\int \tan t \cos t d t=-\int \sin t d t=\cos t \\
& \mu_{3}^{\prime}=\frac{\left|\begin{array}{ccc}
1 & 0 & \cos t \\
0 & -\sin t & 0 \\
0 & -\cos t & \tan t
\end{array}\right|}{1}=-\tan t \sin t \\
& \mu_{2}=-\int \tan t \sin t d t=-2 \tanh ^{-1}(\tan (t / 2))+\sin t
\end{aligned}
$$

This last integral was performed using Mathematica.
A particular solution to the nonhomogeneous differential equation is therefore

$$
\begin{aligned}
y_{p}(t) & =\mu_{1}+\mu_{2} \cos t+\mu_{3} \sin t \\
& =\ln |\sec t|+\cos ^{2} t+\left(-2 \tanh ^{-1}(\tan (t / 2))+\sin t\right) \sin t \\
& =1+\ln |\sec t|-2 \tanh ^{-1}(\tan (t / 2)) \sin t
\end{aligned}
$$

A general solution to the nonhomogeneous differential equation is therefore

$$
\begin{aligned}
y(t) & =y_{c}(t)+y_{p}(t) \\
& =c_{1}+c_{2} \cos t+c_{3} \sin t+1+\ln |\sec t|-2 \tanh ^{-1}(\tan (t / 2)) \sin t \\
& =\tilde{c}_{1}+c_{2} \cos t+c_{3} \sin t+\ln |\sec t|-2 \tanh ^{-1}(\tan (t / 2)) \sin t
\end{aligned}
$$

where $\tilde{c}_{1}=c_{1}+1$.
This solution can be quickly verified using Mathematica:
DSolve[y','[t] + y'[t] == $\operatorname{Tan}[t], y[t], t]$

If you have a few minutes, try to solve $y^{\prime \prime \prime}-y^{\prime}=\tan t$ using Mathematica. I do not recommend doing this one by hand! Although all that was changed was a minus sign, the solution is much more complicated. It is because the integrals to determine $\mu_{i}(t)$ become quite involved.
Example (4.4.3) Find the general solution of the differential equation $y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=e^{4 t}$.
First, solve the associated homogeneous differential equation: $y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation:

$$
\begin{aligned}
& y=e^{r t}, y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t}, y^{\prime \prime \prime}=r^{3} e^{r t} \\
& y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0 \\
& r^{3}-2 r^{2}-r+2 r=0
\end{aligned}
$$

The roots can be found using Mathematica, or you can factor out $r-1$, since $r=1$ is a root by inspection. We find the roots to be $r_{1}=1, r_{2}=-1$, and $r_{3}=2$.
Therefore, the complimentary solution is $y_{c}(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{2 t}$.
Using variation of parameters (undetermined coefficients will also work, and probably be much easier!), we assume a solution of the nonhomogeneous differential equation looks like

$$
Y(t)=\mu_{1}(t) e^{t}+\mu_{2}(t) e^{-t}+\mu_{3}(t) e^{2 t}=\mu_{1} e^{t}+\mu_{2} e^{-t}+\mu_{3} e^{2 t}
$$

Take the derivative:

$$
Y^{\prime}(t)=\mu_{1}^{\prime} e^{t}+\mu_{2}^{\prime} e^{-t}+\mu_{3}^{\prime} e^{2 t}+\mu_{1} e^{t}-\mu_{2} e^{-t}+2 \mu_{3} e^{2 t}
$$

Assume (this is a condition we impose on the problem):

$$
\begin{equation*}
\mu_{1}^{\prime} e^{t}+\mu_{2}^{\prime} e^{-t}+\mu_{3}^{\prime} e^{2 t}=0 \tag{4}
\end{equation*}
$$

Therefore,

$$
Y^{\prime}(t)=\mu_{1} e^{t}-\mu_{2} e^{-t}+2 \mu_{3} e^{2 t}
$$

Differentiate:

$$
Y^{\prime \prime}(t)=\mu_{1}^{\prime} e^{t}-\mu_{2}^{\prime} e^{-t}+2 \mu_{3}^{\prime} e^{2 t}+\mu_{1} e^{t}+\mu_{2} e^{-t}+4 \mu_{3} e^{2 t}
$$

Assume (this is the second condition we impose on the problem):

$$
\begin{equation*}
\mu_{1}^{\prime} e^{t}-\mu_{2}^{\prime} e^{-t}+2 \mu_{3}^{\prime} e^{2 t}=0 \tag{5}
\end{equation*}
$$

Therefore,

$$
Y^{\prime \prime}(t)=\mu_{1} e^{t}+\mu_{2} e^{-t}+4 \mu_{3} e^{2 t}
$$

Differentiate:

$$
Y^{\prime \prime \prime}(t)=\mu_{1}^{\prime} e^{t}+\mu_{2}^{\prime} e^{-t}+4 \mu_{3}^{\prime} e^{2 t}+\mu_{1} e^{t}-\mu_{2} e^{-t}+8 \mu_{3} e^{2 t} .
$$

Substitute into the differential equation, and simplify (details left out this time):

$$
\begin{equation*}
\mu_{1}^{\prime} e^{t}+\mu_{2}^{\prime} e^{-t}+4 \mu_{3}^{\prime} e^{2 t}=e^{4 t} \tag{6}
\end{equation*}
$$

If the μ_{i} do not cancel out at this stage, you have made an error!
Equations (4)-(6) form three equations in the three unknowns $\mu_{1}^{\prime}, \mu_{2}^{\prime}, \mu_{3}^{\prime}$. There are rewritten here so we can use Cramer's rule to solve the system:

$$
\begin{aligned}
\mu_{1}^{\prime} e^{t}+\mu_{2}^{\prime} e^{-t}+\mu_{3}^{\prime} e^{2 t} & =0 \\
\mu_{1}^{\prime} e^{t}-\mu_{2}^{\prime} e^{-t}+2 \mu_{3}^{\prime} e^{2 t} & =0 \\
\mu_{1}^{\prime} e^{t}+\mu_{2}^{\prime} e^{-t}+4 \mu_{3}^{\prime} e^{2 t} & =e^{4 t}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{1}^{\prime}=\frac{\left|\begin{array}{ccc}
0 & e^{-t} & e^{2 t} \\
0 & -e^{-t} & 2 e^{2 t} \\
e^{4 t} & e^{-t} & 4 e^{2 t}
\end{array}\right|}{\left|\begin{array}{ccc}
e^{t} & e^{-t} & e^{2 t} \\
e^{t} & -e^{-t} & 2 e^{2 t} \\
e^{t} & e^{-t} & 4 e^{2 t}
\end{array}\right|}=\frac{e^{4 t}\left(2 e^{t}+e^{t}\right)}{-6 e^{2 t}}=-\frac{1}{2} e^{3 t} \\
& \mu_{1}=-\int \frac{1}{2} e^{3 t} d t=-\frac{1}{6} e^{3 t} \\
& \mu_{2}^{\prime}=\frac{\left|\begin{array}{ccc}
e^{t} & 0 & e^{2 t} \\
e^{t} & 0 & 2 e^{2 t} \\
e^{t} & e^{4 t} & 4 e^{2 t}
\end{array}\right|}{-6 e^{2 t}}=\frac{-e^{4 t}\left(2 e^{3 t}-e^{3 t}\right)}{-6 e^{2 t}}=\frac{1}{6} e^{5 t} \\
& \mu_{2}=\int \frac{1}{6} e^{5 t} d t=\frac{1}{30} e^{5 t} \\
& \mu_{3}^{\prime}=\frac{\left|\begin{array}{ccc}
e^{t} & e^{-t} & 0 \\
e^{t} & -e^{-t} & 0 \\
e^{t} & e^{-t} & e^{4 t}
\end{array}\right|}{-6 e^{2 t}}=\frac{e^{4 t}(-1-1)}{-6 e^{2 t}}=\frac{1}{3} e^{2 t} \\
& \mu_{2}=\int \frac{1}{3} e^{2 t} d t=\frac{1}{6} e^{2 t}
\end{aligned}
$$

A particular solution to the nonhomogeneous differential equation is therefore

$$
\begin{aligned}
y_{p}(t) & =\mu_{1} e^{t}+\mu_{2} e^{-t}+\mu_{3} e^{2 t} \\
& =-\frac{1}{6} e^{3 t} \cdot e^{t}+\frac{1}{30} e^{5 t} \cdot e^{-t}+\frac{1}{6} e^{2 t} \cdot e^{2 t} \\
& =\frac{1}{30} e^{4 t}
\end{aligned}
$$

A general solution to the nonhomogeneous differential equation is therefore

$$
\begin{aligned}
y(t) & =y_{c}(t)+y_{p}(t) \\
& =c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{2 t}+\frac{1}{30} e^{4 t}
\end{aligned}
$$

