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Section 5.1: Review of Power Series

Example (5.1.1) Determine the radius of convergence of the power series
∞∑

n=0

(x− 3)n.

Use the ratio test: if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 then
∑

an converges.

Here, an = (x− 3)n.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞
|x− 3|

= |x− 3|

So we require this to be less than one for convergence, which means |x− 3| < 1. Comparing this to the form |x− x0| < ρ
tells us that this series is centered at x0 = 3 and has radius of convergence of ρ = 1.

The interval of convergence is −1 < x − 3 < 1 −→ 2 < x < 4. We would have to check the endpoints separately to find
out if the series converges at x = 2 or x = 4.

Example (5.1.8) Determine the radius of convergence of the power series
∞∑

n=1

n!xn

nn
.

Use the root test: if lim
n→∞

|an|1/n
< 1 then

∑
an converges.

Here, an = (n!xn)/nn.

lim
n→∞

|an|1/n = lim
n→∞

∣∣∣∣n!xn

nn

∣∣∣∣1/n

= lim
n→∞

∣∣∣∣n!1/nx

n

∣∣∣∣
Hmmm, don’t quite know what to do next.

Try the ratio test instead: if lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 then
∑

an converges.

Here, an = (n!xn)/nn.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)!xn+1

(n + 1)n+1
· nn

n!xn

∣∣∣∣
= lim

n→∞

∣∣∣∣x(
n

n + 1

)n∣∣∣∣
= |x| lim

n→∞

∣∣∣∣(1− 1
n + 1

)n∣∣∣∣
OK, let’s play a bit. Or, fire up a computer to work out the limit.

lim
n→∞

∣∣∣∣(1− 1
n + 1

)n∣∣∣∣ = lim
m→∞

∣∣∣∣∣
(

1− 1
m

)m−1
∣∣∣∣∣

= lim
m→∞

∣∣∣∣∣
(
1− 1

m

)m(
1− 1

m

) ∣∣∣∣∣
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=

∣∣∣∣∣ limm→∞
(
1− 1

m

)m

limm→∞
(
1− 1

m

) ∣∣∣∣∣
=

∣∣∣∣∣ limm→∞
(
1− 1

m

)m

(1− 0)

∣∣∣∣∣
= lim

m→∞

∣∣∣∣(1− 1
m

)m∣∣∣∣
= lim

n→∞

∣∣∣∣(1− 1
n

)n∣∣∣∣ = lim
n→∞

(
1− 1

n

)n

Recall from Calculus the following result:

We can express eα as the limit of a function. Here’s how:

f(x) = ln x

f ′(x) =
1
x

f ′(1) = 1

Now, let’s calculate f ′(1) using the definition of derivative.

f ′(1) = lim
h→0

f(1 + h)− f(1)
h

= lim
x→0

f(1 + x)− f(1)
x

(relabel h → x)

= lim
x→0

ln(1 + x)− ln(1)
x

, ln 1 = 0

= lim
x→0

1
x

ln(1 + x) (use logarithm law r lnx = ln(xr))

= lim
x→0

ln(1 + x)1/x

= ln lim
x→0

(1 + x)1/x (interchange limit and logarithm)

We know this should equal 1 from our above calculation. We also know that ln e = 1. Therefore, we must have:

e = lim
x→0

(1 + x)1/x (limit at zero)

Therefore,

eα =
(

lim
x→0

(1 + x)1/x
)α

= lim
x→0

(1 + x)α/x let n = α/x. As x −→ 0, n −→∞

= lim
n→∞

(
1 +

α

n

)n

e−1 = lim
n→∞

(
1− 1

n

)n

So, collecting this all together, we have:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x|e−1
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So we require this to be less than one for convergence, which means |x|e−1 < 1, or |x| < e. Comparing this to the form
|x− x0| < ρ tells us that this series is centered at x0 = 0 and has radius of convergence of ρ = e.

The interval of convergence is −e < x < e. We would have to check the endpoints separately to find out if the series
converges at x = ±e.

Example (5.1.15) Determine the Taylor Series (which includes the radius of convergence) about x0 = 0 for the function

f(x) =
1

1− x
.

f(x) =
1

1− x
, x0 = 0.

n f (n)(x) f (n)(x0)
0 (1− x)−1 1 = 0!
1 1(1− x)−2 1 = 1!
2 2(1− x)−3 1 · 2 = 2!
3 2 · 3(1− x)−4 1 · 2 · 3 = 3!
4 2 · 3 · 4(1− x)−5 1 · 2 · 3 · 4 = 4!
5 2 · 3 · 4 · 5(1− x)−6 1 · 2 · 3 · 4 · 5 = 5!

...
n n!(1− x)−(n+1) n!

The Taylor series is f(x) =
∞∑

n=0

f (n)(x0)
n!

(x− x0)n =
∞∑

n=0

xn.

Radius of convergence: Use ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = lim
n→∞

|x| = |x| < 1

So radius of convergence is ρ = 1.

Example (5.1.16) Determine the Taylor Series (which includes the radius of convergence) about x0 = 2 for the function

f(x) =
1

1− x
.

f(x) =
1

1− x
, x0 = 2.

n f (n)(x) f (n)(x0)
0 (1− x)−1 1 = 0!
1 1(1− x)−2 1(−1)−2 = 1!
2 2(1− x)−3 1 · 2(−1)−3 = −2!
3 2 · 3(1− x)−4 1 · 2 · 3(−1)−4 = 3!
4 2 · 3 · 4(1− x)−5 1 · 2 · 3 · 4(−1)−5 = −4!
5 2 · 3 · 4 · 5(1− x)−6 1 · 2 · 3 · 4 · 5(−1)−6 = 5!

...
n n!(−1)n+1(1− x)−(n+1) (−1)n+1n!

The Taylor series is f(x) =
∞∑

n=0

f (n)(x0)
n!

(x− x0)n =
∞∑

n=0

(−1)n+1(x− 2)n.
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Radius of convergence: Use ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 2)n+1

(x− 2)n

∣∣∣∣ = lim
n→∞

|(x− 2)| = |x− 2| < 1

So radius of convergence is ρ = 1.

Example (5.1.21) Rewrite
∞∑

n=2

n(n− 1)anxn−2 into a sum whose generic term involves xn.

Here, we want to let m = n− 2. When n = 2, m = 0. Also, n = m + 2.

∞∑
n=2

n(n− 1)anxn−2 =
∞∑

m=0

(m + 2)(m + 1)am+2x
m

Now, relabel as m = n:

∞∑
n=2

n(n− 1)anxn−2 =
∞∑

n=0

(n + 2)(n + 1)an+2x
n

Remember, n is a dummy index and that is what makes this relabelling possible.

Example (5.1.25) Rewrite
∞∑

m=2

m(m− 1)amxm−2 + x
∞∑

k=1

kakxk−1 into a sum whose generic term involves xn.

Here, we want to let n = m− 2. When m = 2, n = 0. Also, m = n + 2. Also, we can bring the x inside the summation in
the second summation.

∞∑
m=2

m(m− 1)amxm−2 + x
∞∑

k=1

kakxk−1 =
∞∑

n=0

(n + 2)(n + 1)an+2x
n +

∞∑
k=1

kakxk

Now, relabel as k = n. Also, we need to take the n = 0 term out of the first sum, so both sums will begin at n = 1.

∞∑
m=2

m(m− 1)amxm−2 + x

∞∑
k=1

kakxk−1 =
∞∑

n=0

(n + 2)(n + 1)an+2x
n +

∞∑
k=1

kakxk

= 2a2 +
∞∑

n=1

(n + 2)(n + 1)an+2x
n +

∞∑
n=1

nanxn

= 2a2 +
∞∑

n=1

[(n + 2)(n + 1)an+2 + nan]xn

In this case, we can collect the first term in with the rest, since the quantity in the square brackets is 2a2 when n = 0.
This final simplification will not always occur when we are looking for series solutions of differential equations!

∞∑
m=2

m(m− 1)amxm−2 + x
∞∑

k=1

kakxk−1 =
∞∑

n=0

[(n + 2)(n + 1)an+2 + nan]xn


