Section 5.1: Review of Power Series

Example (5.1.1) Determine the radius of convergence of the power series $\sum_{n=0}^{\infty}(x-3)^{n}$.
Use the ratio test: if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$ then $\sum a_{n}$ converges.
Here, $a_{n}=(x-3)^{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(x-3)^{n+1}}{(x-3)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}|x-3| \\
& =|x-3|
\end{aligned}
$$

So we require this to be less than one for convergence, which means $|x-3|<1$. Comparing this to the form $\left|x-x_{0}\right|<\rho$ tells us that this series is centered at $x_{0}=3$ and has radius of convergence of $\rho=1$.

The interval of convergence is $-1<x-3<1 \longrightarrow 2<x<4$. We would have to check the endpoints separately to find out if the series converges at $x=2$ or $x=4$.
Example (5.1.8) Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!x^{n}}{n^{n}}$.
Use the root test: if $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}<1$ then $\sum a_{n}$ converges.
Here, $a_{n}=\left(n!x^{n}\right) / n^{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} & =\lim _{n \rightarrow \infty}\left|\frac{n!x^{n}}{n^{n}}\right|^{1 / n} \\
& =\lim _{n \rightarrow \infty}\left|\frac{n!^{1 / n} x}{n}\right|
\end{aligned}
$$

Hmmm, don't quite know what to do next.
Try the ratio test instead: if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$ then $\sum a_{n}$ converges.
Here, $a_{n}=\left(n!x^{n}\right) / n^{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(n+1)!x^{n+1}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|x\left(\frac{n}{n+1}\right)^{n}\right| \\
& =|x| \lim _{n \rightarrow \infty}\left|\left(1-\frac{1}{n+1}\right)^{n}\right|
\end{aligned}
$$

OK, let's play a bit. Or, fire up a computer to work out the limit.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\left(1-\frac{1}{n+1}\right)^{n}\right| & =\lim _{m \rightarrow \infty}\left|\left(1-\frac{1}{m}\right)^{m-1}\right| \\
& =\lim _{m \rightarrow \infty}\left|\frac{\left(1-\frac{1}{m}\right)^{m}}{\left(1-\frac{1}{m}\right)}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\frac{\lim _{m \rightarrow \infty}\left(1-\frac{1}{m}\right)^{m}}{\lim _{m \rightarrow \infty}\left(1-\frac{1}{m}\right)}\right| \\
& =\left|\frac{\lim _{m \rightarrow \infty}\left(1-\frac{1}{m}\right)^{m}}{(1-0)}\right| \\
& =\lim _{m \rightarrow \infty}\left|\left(1-\frac{1}{m}\right)^{m}\right| \\
& =\lim _{n \rightarrow \infty}\left|\left(1-\frac{1}{n}\right)^{n}\right|=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}
\end{aligned}
$$

Recall from Calculus the following result:
We can express e^{α} as the limit of a function. Here's how:

$$
\begin{aligned}
f(x) & =\ln x \\
f^{\prime}(x) & =\frac{1}{x} \\
f^{\prime}(1) & =1
\end{aligned}
$$

Now, let's calculate $f^{\prime}(1)$ using the definition of derivative.

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{x \rightarrow 0} \frac{f(1+x)-f(1)}{x}(\text { relabel } h \rightarrow x) \\
& =\lim _{x \rightarrow 0} \frac{\ln (1+x)-\ln (1)}{x}, \quad \ln 1=0 \\
& \left.=\lim _{x \rightarrow 0} \frac{1}{x} \ln (1+x) \text { (use logarithm law } r \ln x=\ln \left(x^{r}\right)\right) \\
& =\lim _{x \rightarrow 0} \ln (1+x)^{1 / x} \\
& =\ln \lim _{x \rightarrow 0}(1+x)^{1 / x} \text { (interchange limit and logarithm) }
\end{aligned}
$$

We know this should equal 1 from our above calculation. We also know that $\ln e=1$. Therefore, we must have:

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x} \text { (limit at zero) }
$$

Therefore,

$$
\begin{aligned}
e^{\alpha} & =\left(\lim _{x \rightarrow 0}(1+x)^{1 / x}\right)^{\alpha} \\
& =\lim _{x \rightarrow 0}(1+x)^{\alpha / x} \text { let } n=\alpha / x . \text { As } x \longrightarrow 0, n \longrightarrow \infty \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{\alpha}{n}\right)^{n} \\
e^{-1} & =\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}
\end{aligned}
$$

So, collecting this all together, we have:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=|x| e^{-1}
$$

So we require this to be less than one for convergence, which means $|x| e^{-1}<1$, or $|x|<e$. Comparing this to the form $\left|x-x_{0}\right|<\rho$ tells us that this series is centered at $x_{0}=0$ and has radius of convergence of $\rho=e$.
The interval of convergence is $-e<x<e$. We would have to check the endpoints separately to find out if the series converges at $x= \pm e$.
Example (5.1.15) Determine the Taylor Series (which includes the radius of convergence) about $x_{0}=0$ for the function $f(x)=\frac{1}{1-x}$.

$$
f(x)=\frac{1}{1-x}, \quad x_{0}=0
$$

n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right)$
0	$(1-x)^{-1}$	$1=0!$
1	$1(1-x)^{-2}$	$1=1!$
2	$2(1-x)^{-3}$	$1 \cdot 2=2!$
3	$2 \cdot 3(1-x)^{-4}$	$1 \cdot 2 \cdot 3=3!$
4	$2 \cdot 3 \cdot 4(1-x)^{-5}$	$1 \cdot 2 \cdot 3 \cdot 4=4!$
5	$2 \cdot 3 \cdot 4 \cdot 5(1-x)^{-6}$	$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=5!$
	\vdots	
n	$n!(1-x)^{-(n+1)}$	$n!$

The Taylor series is $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} x^{n}$.
Radius of convergence: Use ratio test.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{x^{n}}\right|=\lim _{n \rightarrow \infty}|x|=|x|<1
$$

So radius of convergence is $\rho=1$.
Example (5.1.16) Determine the Taylor Series (which includes the radius of convergence) about $x_{0}=2$ for the function $f(x)=\frac{1}{1-x}$.

$$
f(x)=\frac{1}{1-x}, \quad x_{0}=2
$$

n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right)$
0	$(1-x)^{-1}$	$1=0!$
1	$1(1-x)^{-2}$	$1(-1)^{-2}=1!$
2	$2(1-x)^{-3}$	$1 \cdot 2(-1)^{-3}=-2!$
3	$2 \cdot 3(1-x)^{-4}$	$1 \cdot 2 \cdot 3(-1)^{-4}=3!$
4	$2 \cdot 3 \cdot 4(1-x)^{-5}$	$1 \cdot 2 \cdot 3 \cdot 4(-1)^{-5}=-4!$
5	$2 \cdot 3 \cdot 4 \cdot 5(1-x)^{-6}$	$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5(-1)^{-6}=5!$
	\vdots	
n	$n!(-1)^{n+1}(1-x)^{-(n+1)}$	$(-1)^{n+1} n!$

The Taylor series is $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n+1}(x-2)^{n}$.

Radius of convergence: Use ratio test.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{(x-2)^{n}}\right|=\lim _{n \rightarrow \infty}|(x-2)|=|x-2|<1
$$

So radius of convergence is $\rho=1$.
Example (5.1.21) Rewrite $\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}$ into a sum whose generic term involves x^{n}.
Here, we want to let $m=n-2$. When $n=2, m=0$. Also, $n=m+2$.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{m=0}^{\infty}(m+2)(m+1) a_{m+2} x^{m}
$$

Now, relabel as $m=n$:

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
$$

Remember, n is a dummy index and that is what makes this relabelling possible.
Example (5.1.25) Rewrite $\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1}$ into a sum whose generic term involves x^{n}.
Here, we want to let $n=m-2$. When $m=2, n=0$. Also, $m=n+2$. Also, we can bring the x inside the summation in the second summation.

$$
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{k=1}^{\infty} k a_{k} x^{k}
$$

Now, relabel as $k=n$. Also, we need to take the $n=0$ term out of the first sum, so both sums will begin at $n=1$.

$$
\begin{aligned}
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1} & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{k=1}^{\infty} k a_{k} x^{k} \\
& =2 a_{2}+\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=1}^{\infty} n a_{n} x^{n} \\
& =2 a_{2}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}+n a_{n}\right] x^{n}
\end{aligned}
$$

In this case, we can collect the first term in with the rest, since the quantity in the square brackets is $2 a_{2}$ when $n=0$. This final simplification will not always occur when we are looking for series solutions of differential equations!

$$
\sum_{m=2}^{\infty} m(m-1) a_{m} x^{m-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1}=\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+n a_{n}\right] x^{n}
$$

