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Section 5.2: Series Solution Near Ordinary Point, Part I

Example (5.2.1) Solve the differential equation y′′ − y = 0 using a series solution about x0 = 0.

This could be solved by assuming y = ert, since the differential equation has constant coefficients and is linear. We will
solve using series solution instead.

First, since p(x) = 0 and q(x) = 1, which are analytic about x = 0, the point x = 0 is an ordinary point. Therefore, the
assumed solution for the differential equation is

y =
∞∑

n=0

an(x− x0)n =
∞∑

n=0

anxn

y′ =
∞∑

n=1

nanxn−1

y′′ =
∞∑

n=2

n(n− 1)anxn−2

Substitute into the differential equation:

y′′ − y = 0
∞∑

n=2

n(n− 1)anxn−2 −
∞∑

n=0

anxn = 0

Relabel each term so it has an xn:

∞∑
n=0

(n + 1)(n + 2)an+2x
n −

∞∑
n=0

anxn = 0

∞∑
n=0

[(n + 1)(n + 2)an+2 − an]xn = 0

For this to be true for all values of x, each coefficient of the series must be zero,

(n + 1)(n + 2)an+2 − an = 0, n = 0, 1, 2, 3, . . .

This is the recurrence relation. We solve the recurrence relation for an+2, then determine the first few coefficients ai and
try to determine a pattern. We will not always be able to determine a pattern!

an+2 =
an

(n + 1)(n + 2)
, n = 0, 1, 2, 3, . . .

a0 = unspecified, assume not equal to zero
a1 = unspecified, assume not equal to zero

a2 =
a0

2
=

a0

2!
a3 =

a1

6
=

a1

3!
a4 =

a2

12
=

a0

4!
a5 =

a3

20
=

a1

5!
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The pattern in the above is a2n = a0/(2n)! for even terms, and for odd terms we get a2n+1 = a1/(2n + 1)!. Therefore,

y(x) =
∞∑

n=0

anxn

=
∞∑

n=0

a2nx2n +
∞∑

n=0

a2n+1x
2n+1

=
∞∑

n=0

a0

(2n)!
x2n +

∞∑
n=0

a1

(2n + 1)!
x2n+1

= a0

∞∑
n=0

x2n

(2n)!
+ a1

∞∑
n=0

x2n+1

(2n + 1)!

= a0 coshx + a1 sinhx

We were able to sum the infinite series, or more precisely we recognized them as Taylor series expansions of known
functions. This is what we would really like to be able to do all the time, but it is not always possible.

The a0 and a1 are the constants of integration which would be determined by initial conditions if we had an initial value
problem. We might prefer to write the solution as y(x) = c1y1(x)+ c2y2(x), where y1(x) = coshx and y2(x) = sinhx form
a fundamental set of solutions.

Example (5.2.2) Solve the differential equation y′′ − xy′ − y = 0 using a series solution about x0 = 0.

This could not be solved by assuming y = ert, since the differential equation has variable coefficients.

First, since p(x) = −x and q(x) = −1, which are analytic about x = 0, the point x = 0 is an ordinary point. Therefore,
the assumed solution for the differential equation is

y =
∞∑

n=0

an(x− x0)n =
∞∑

n=0

anxn

y′ =
∞∑

n=1

nanxn−1

y′′ =
∞∑

n=2

n(n− 1)anxn−2

Substitute into the differential equation:

y′′ − xy′ − y = 0
∞∑

n=2

n(n− 1)anxn−2 − x
∞∑

n=1

nanxn−1 −
∞∑

n=0

anxn = 0

∞∑
n=2

n(n− 1)anxn−2 −
∞∑

n=1

nanxn −
∞∑

n=0

anxn = 0

Relabel each term so it has an xn:
∞∑

n=0

(n + 1)(n + 2)an+2x
n −

∞∑
n=1

nanxn −
∞∑

n=0

anxn = 0

Now we need each sum to start at the same value of n; we can achieve this by removing the n = 0 terms from the first
and third sum:

(2a2 − a0)x0 +
∞∑

n=1

(n + 1)(n + 2)an+2x
n −

∞∑
n=1

nanxn −
∞∑

n=1

anxn = 0
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(2a2 − a0)x0 +
∞∑

n=1

[(n + 1)(n + 2)an+2 − nan − an]xn = 0

For this to be true for all values of x, each coefficient of the series must be zero,

2a2 − a0 = 0
(n + 1)(n + 2)an+2 − nan − an = 0, n = 1, 2, 3, . . .

Notice that since the sum started at n = 1, the second equation is true for n = 1, 2, 3, . . ..

These are the recurrence relations. Sometimes (but not always!) it is the case that the recurrence relations can be written
for n = 0, 1, 2, 3, . . .. We see here that n = 0 in the second equation gives us 2a2 − a0 = 0, so the first equation is really
the second with n = 0. A bit of algebra gives us for the recurrence relations (since n + 1 6= 0):

(n + 2)an+2 − an = 0, n = 0, 1, 2, 3, . . .

We solve the recurrence relation for an+2, then determine the first few coefficients ai and try to determine a pattern.

an+2 =
an

(n + 2)
, n = 0, 1, 2, 3, . . .

a0 = c1 unspecified, assume not equal to zero
a1 = c2 unspecified, assume not equal to zero

a2 =
a0

2
=

c1

2
a3 =

a1

3
=

c2

3
a4 =

a2

4
=

c1

2 · 4
a5 =

a3

5
=

c2

3 · 5

The pattern in the above is a2k = c1/(2 · 4 · 6 · · · (2k)) for even terms, and for odd terms we get a2k+1 = c2/(1 · 3 · 5 ·
7 · · · (2k + 1)). Therefore,

y(x) =
∞∑

n=0

anxn

=
∞∑

k=0

a2kx2k +
∞∑

k=0

a2k+1x
2k+1

= c1

∞∑
k=0

x2k

2 · 4 · 6 · · · (2k)
+ c2

∞∑
k=0

x2k+1

1 · 3 · 5 · 7 · · · (2k + 1)

= c1y1(x) + c2y2(x)

y1(x) =
∞∑

k=0

x2k

2 · 4 · 6 · · · (2k)

y2(x) =
∞∑

k=0

x2k+1

1 · 3 · 5 · 7 · · · (2k + 1)

The y1(x) and y2(x) are linearly independent since one is odd and the other even, so they form a fundamental set of
solutions.
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We would like to simplify these functions if possible, so let’s see what we can do!

y1(x) =
∞∑

n=0

x2n

2 · 4 · 6 · · · (2n)

=
∞∑

n=0

x2n

2n(1 · 2 · 3 · · ·n)

=
∞∑

n=0

x2n

2nn!

=
∞∑

n=0

1
n!

(
x2

2

)n

= ex2/2

where we recognized the Taylor series eu =
∞∑

n=0

un

n!
.

The second function is trickier. Notice that we almost have a factorial in the denominator, but we are missing
2 · 4 · 6 · · · (2n) = 2(1 · 2 · 3 · · ·n):

y2(x) =
∞∑

n=0

x2n+1

1 · 3 · 5 · 7 · · · (2n + 1)

=
∞∑

n=0

x2n+12(1 · 2 · 3 · · ·n)
1 · 2 · 3 · 4 · 5 · · · (2n + 1)

=
∞∑

n=0

2n!x2n+1

(2n + 1)!

This is an improvement, since we have removed the · · · and now have factorials. We can leave it here, but if you fire up
Mathematica you can simplify this even further.

y2(x) =
∞∑

n=0

2n!x2n+1

(2n + 1)!
= 2ex2/2

√
π erf(x/2).

The error function erf(x) is given by erf(x) =
2√
π

∫ x

0

e−t2 dt, and it is commonly seen in probability theory.

Example (5.2.21) Hermite Equation Solve the differential equation y′′ − 2xy′ + λy = 0 using a series solution about
x0 = 0.

This could not be solved by assuming y = ert, since the differential equation has variable coefficients.

First, since p(x) = −2x and q(x) = λ, which are analytic about x = 0, the point x = 0 is an ordinary point. Therefore,
the assumed solution for the differential equation is

y =
∞∑

n=0

an(x− x0)n =
∞∑

n=0

anxn

y′ =
∞∑

n=1

nanxn−1

y′′ =
∞∑

n=2

n(n− 1)anxn−2
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Substitute into the differential equation:

y′′ − 2xy′ + λy = 0
∞∑

n=2

n(n− 1)anxn−2 − 2x
∞∑

n=1

nanxn−1 + λ
∞∑

n=0

anxn = 0

∞∑
n=2

n(n− 1)anxn−2 −
∞∑

n=1

2nanxn +
∞∑

n=0

λanxn = 0

Relabel each term so it has an xn:

∞∑
n=0

(n + 1)(n + 2)an+2x
n −

∞∑
n=1

2nanxn +
∞∑

n=0

λanxn = 0

Now we need each sum to start at the same value of n; we can achieve this by removing the n = 0 terms from the first
and third sum:

(2a2 + λa0)x0 +
∞∑

n=1

(n + 1)(n + 2)an+2x
n −

∞∑
n=1

2nanxn +
∞∑

n=1

λanxn = 0

(2a2 + λa0)x0 +
∞∑

n=1

[(n + 1)(n + 2)an+2 − 2nan + λan]xn = 0

For this to be true for all values of x, each coefficient of the series must be zero,

2a2 + λa0 = 0
(n + 1)(n + 2)an+2 − 2nan + λan = 0, n = 1, 2, 3, . . .

Notice that since the sum started at n = 1, the second equation is true for n = 1, 2, 3, . . ..

These are the recurrence relations. Sometimes (but not always!) it is the case that the recurrence relations can be written
for n = 0, 1, 2, 3, . . .. We see here that n = 0 in the second equation gives us 2a2 − λa0 = 0, so the first equation is really
the second with n = 0. A bit of algebra gives us for the recurrence relations :

(n + 1)(n + 2)an+2 + (λ− 2n)an = 0, n = 0, 1, 2, 3, . . .

We solve the recurrence relation for an+2, then determine the first few coefficients ai and try to determine a pattern.

an+2 =
an(2n− λ)

(n + 1)(n + 2)
, n = 0, 1, 2, 3, . . .

a0 = c1 unspecified, assume not equal to zero
a1 = c2 unspecified, assume not equal to zero

a2 =
a0(−λ)

2
=

c1(−λ)
2

a3 =
a1(2− λ)

2 · 3
=

c2(2− λ)
3!

a4 =
a2(4− λ)

3 · 4
=

c1(−λ)(4− λ)
4!

a5 =
a3(6− λ)

4 · 5
=

c2(2− λ)(6− λ)
5!

a6 =
a4(8− λ)

5 · 6
=

c1(−λ)(4− λ)(8− λ)
6!

a7 =
a5(10− λ)

6 · 7
=

c2(2− λ)(6− λ)(10− λ)
7!
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The pattern in the above is a bit difficult to write out, but it is readily apparent there is a pattern! For even terms, the
pattern is

a2k+2 = c1
(2 · 0− λ)(2 · 2− λ)(2 · 4− λ)(2 · 6− λ) · · · (2(2k)− λ)

(2k + 2)!
, k = 0, 1, 2, 3, . . .

= c1
(4 · 0− λ)(4 · 1− λ)(4 · 2− λ)(4 · 3− λ) · · · (4k − λ)

(2k + 2)!
, k = 0, 1, 2, 3, . . .

= c1
1

(2k + 2)!

k∏
i=0

(4 · i− λ), k = 0, 1, 2, 3, . . .

For odd terms, the pattern is identified in terms of products using
(2 · 2− λ)(2 · 4− λ)(2 · 6− λ) · · · (2 · 2k − λ)∏k

i=1(4 · i− λ)
= 1,

a2k+3 = c2
(2 · 1− λ)(2 · 3− λ)(2 · 5− λ) · · · (2(2k + 1)− λ)

(2k + 3)!
, k = 0, 1, 2, 3, . . .

= c2
(2 · 1− λ)(2 · 2− λ)(2 · 3− λ)(2 · 4− λ)(2 · 5− λ) · · · (2 · 2k − λ)(2(2k + 1)− λ)

(2k + 3)!
∏k

i=1(4 · i− λ)
, k = 0, 1, 2, 3, . . .

= c2

∏2k+1
i=1 (2 · i− λ)

(2k + 3)!
∏k

i=1(4 · i− λ)
, k = 0, 1, 2, 3, . . .

I have checked these patterns in the associated Mathematica file. That’s always a good idea when you are doing some
complicated simplifications!

Therefore,

y(x) =
∞∑

n=0

anxn

= a0 +
∞∑

k=0

a2k+2x
2k+2 + a1x +

∞∑
k=0

a2k+3x
2k+3

= c1

(
1 +

∞∑
k=0

1
(2k + 2)!

k∏
i=0

(4 · i− λ)x2k+2

)
+ c2

(
x +

∞∑
k=0

∏2k+1
i=1 (2 · i− λ)

(2k + 3)!
∏k

i=1(4 · i− λ)
x2k+3

)
= c1y1(x) + c2y2(x)

y1(x) = 1 +
∞∑

k=0

1
(2k + 2)!

k∏
i=0

(4 · i− λ)x2k+2

y2(x) = x +
∞∑

k=0

∏2k+1
i=1 (2 · i− λ)

(2k + 3)!
∏k

i=1(4 · i− λ)
x2k+3

The y1(x) and y2(x) are linearly independent since one is odd and the other even, so they form a fundamental set of
solutions. If we can’t recognize the pattern, which we saw was a difficult process, we can instead write the first few terms
in the series (usually four or five will do). If more terms are required, the coefficients can be calculated using the recursion
relations.

The Hermite Polynomials

What follows is particularly of interest to physicists, since the Hermite polynomials Hn(x) arise in solving the Schrödinger
equation for a harmonic oscillator. However, it also shows one way in which special functions arise from differential
equations, so in that sense it is of interest to all.
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If λ is nonnegative even integer, then λ = 2m, and something interesting happens to our solutions. One of these solutions
will become a polynomial in this case–the first if m is even, and the second if m is odd. Let’s see how this happens.

Assume m is even.

y1(x) = 1 +
∞∑

k=0

1
(2k + 2)!

k∏
i=0

(4 · i− λ)x2k+2

= 1 +
∞∑

k=0

1
(2k + 2)!

k∏
i=0

(4 · i− 2m)x2k+2

= 1 +
∞∑

k=0

2k+1

(2k + 2)!

k∏
i=0

(2 · i−m)x2k+2

= 1 +
m/2∑
k=0

2k+1

(2k + 2)!

k∏
i=0

(2 · i−m)x2k+2

where we have stopped summing at k = m/2 (which is an integer since m is even) since higher terms will have a factor
2 ·m/2−m = 0 in the product.

Assume m is odd.

y2(x) = x +
∞∑

k=0

∏2k+1
i=1 (2 · i− λ)

(2k + 3)!
∏k

i=1(4 · i− λ)
x2k+3

= x +
∞∑

k=0

∏2k+1
i=1 (2 · i− 2m)

(2k + 3)!
∏k

i=1(4 · i− 2m)
x2k+3

= x +
(m−1)/2∑

k=0

2k+1

(2k + 3)!

∏2k+1
i=1 (·i−m)∏k
i=1(2 · i−m)

x2k+3

The product in the numerator will have a zero factor when 2k + 1 − m = 0. Therefore, we stopped the summing at
k = (m− 1)/2. This is an integer since m is odd.

The Hermite polynomial Hm(x) is defined as the polynomial solution to the Hermite equation with λ = 2m for which the
coefficient of xm is 2m. The Hermite polynomials are found from flipping back and forth between y1 and y2, depending
on which one has the terminating infinite sum, and then normalizing.

m Hm(x) y1(x)|m y2(x)|m
0 1 1 –
1 2x – x = 1

2 (2x)
2 −2 + 4x2 1− 2x2 = − 1

2 (−2 + 4x2) –
3 −12x + 8x3 – x− 2

3x3 = − 1
12 (−12x + 8x3)

4 12− 48x2 + 16x4 1− 4x2 + 4
3x4 = 1

12 (12− 48x2 + 16x4) –
5 120x− 160x3 + 32x5 – x− 4

3x3 + 4
15x5 = 1

120 (120x− 160x3 + 32x5)

What this means is that the differential equation y′′ − 2xy′ + 2ny = 0, n an integer, has a solution Hn(x), which is a
polynomial, not an infinite series. The other solution is an infinite series, and can be represented by a Hypergeometric
function.

In physics, this differential equation arises when solving the quantum mechanical harmonic oscillator. The solution which
is an infinite series is not physical, since it leads to a quantum mechanical wavefunction which is infinite as x →∞.


