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Section 5.4: Euler’s Equation; Regular Singular Points

Example (5.4.1) Determine the solution to the differential equation z%y” + 42y’ + 2y = 0 that is valid in any interval
not, containing the singular point.

The is an Euler equation (since the power of z in the coeflicient is the same as the derivative), and the singular point is
z = 0.

Assume a solution looks like y = z".

Differentiate, and substitute into the differential equation:

y=a", y =ra"t, Y =r(r—1)2"?
22y +day' + 2y =
r(r—1)a" +4ra” + 22"
rr—=1)+4r+2 = 0

This is the indicial equation. Solving, we find (r + 2)(r 4+ 1) = 0, so the roots are r = —2 and r = —1.
The general solution is therefore y(z) = c12™! + coz™2, which is valid for > 0. This is also the solution if x < 0, so the

general solution is y(z) = a + 2 . # 0.
x

a2’
3

Example (5.4.2) Determine the solution to the differential equation (z + 1)%y” + 3(z + 1)y’ + = 0 that is valid in

any interval not containing the singular point.

The is an Euler equation (since the power of 2 4+ 1 in the coefficient is the same as the derivative), and the singular point
isxz=—1.

Assume a solution looks like y = (x 4+ 1)".

Differentiate, and substitute into the differential equation:

y=(@+1)", ¥V=r@z+1)" ¢ =r(r—1)(z+1)2

3
(@+ 1% +3@+1)y' +7y = 0
3 X
r(r—1)(1‘—&—1)’”—&—37"(:104—1)’“4—i(x—i—l)’ =0
3
r(r—l)—i—Sr—&—Z =0

This is the indicial equation. Solving, we find (r + 3/2)(r 4+ 1/2) = 0, so the roots are r = —3/2 and r = —1/2.

The general solution is therefore y(x) = ¢1(x +1)73/2 + cy(2 + 1)~/2, which is valid for 2 > 1. For = < 1, the solution is
y(x) = 1|z + 1|73/2 + eolz 4+ 1|71/2. For © # 1, the solution is y(z) = c1|z + 1|7%/2 + cp|a + 1|71/2,

Example (5.4.9) Determine the solution to the differential equation 22y” — 5xy’ + 9y = 0 that is valid in any interval
not, containing the singular point.

The is an Euler equation (since the power of x in the coeflicient is the same as the derivative), and the singular point is
z = 0.

Assume a solution looks like y = z".

Differentiate, and substitute into the differential equation:

r / r—1 2

y=a", y=ra""", y'=r(r-1)z"
22y’ —5zy' +9y = 0
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r(r—1)az" —b5rz" + 92" = 0
rr—1)=5r+9 = 0
This is the indicial equation. Solving, we find (r — 3)2 = 0, so the root is 7 = 3 of multiplicity 2.

Therefore, one solution is y; (r) = z3.

If we forget the second solution looks like y2(x) = 23 In|z| for a repeated root, we can always work it out using reduction
of order.

Assume y(z) = v(z)y1 (x) = vad.
y = va®+ 3va?

y" = "2 602 + 6o

Substitute into the differential equation, and determine v:

2y — 5y’ +9y = 0
22(v" 2 + 6v'2? + 6vz) — 5r(v'ed + 3vz?) + 9(va®) = 0
V"7 4 60zt + Bod® — 5u'at — 1507 + 7 = 0
Ve +0 = 0
d /
%J; +v" = 0
dv' dx
v T
Injv|+c¢ = —In|z
Injv'| = Injz™ ! —¢
vl = e
Vo= 2 p=en
x
/dv = /dex
x
v = colnlz|+cs

Another solution is therefore y(z) = v(z)y1(x) = co2® In|x| + csz3. This is the general solution, and a fundamental set of
solutions is y; (z) = 2% and yo(x) = 23 In|z|, which is valid for x # 0.

Example (5.4.17) Find all the singular points of the differential equation zy” + (1 — z)y’ + zy = 0, and determine
whether each one is regular or irregular.

The general form of a linear second order differential equation is y” + p(z)y’ + ¢(z)y = 0.

—r andq(:ﬂ):le.

Identify p(x) = !
x

Since p(x) is not analytic at x = 0 (meaning there is no Taylor series with nonzero radius of convergence about x = 0),
x = 0 is a singular point.

2

Since zp(x) = 1 — x and 22¢(z) = 22 are both analytic at # = 0, we have z = 0 is a regular singular point.

2
Example (5.4.20) Find all the singular points of the differential equation z*(1 — 2?)y” 4+ =y’ 4+ 4y = 0, and determine
x

whether each one is regular or irregular.

The general form of a linear second order differential equation is y” + p(z)y’ + ¢(x)y = 0.
4

2
T and ¢q(z) =
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Since p(z) is not analytic at z = 0,1, —1 (meaning there is no Taylor series with nonzero radius of convergence about
x=0,1,—-1), x = 0,1, —1 are singular points. Also, ¢(z) is not analytic at these points.

We need to classify these points, taking each in turn.

x=0:

Consider (z — 0)p(z) =

4
and (z — 0)%q(z) = 1 Although x2¢(z) is analytic at = = 0, since zp(x) is not

22(1 — 22) — a2
analytic at © = 0, the point x = 0 is an irregular singular point.
z=1:
Consider (z — 1)p(x) 2 d (2 1)%q(x) = “1=2) B lytic at z = 1 1i 1
onsider (z — x)=————— and (x — x)=——>=. Bo ese are analytic at x = 1, so = 1 is a regular
P x3(1+x) ¢ 23(1+ x) Y ’ &
singular point.
z=—1:
Consider (z+1)p(z) = ———— and (z+1)%q(z) = 4d+z) Both these are analytic at © = —1, so = —1 is a regular
P = 23(1 —x) aE = 231 —z) Y 7 B &

singular point.

Example (5.4.21) Find all the singular points of the differential equation (1 — 2?)*y” + (1 — z)y’ + (1 + )y = 0, and
determine whether each one is regular or irregular.

The general form of a linear second order differential equation is y” + p(x)y’ + q(z)y = 0.

) x(1—x) x (1+2) 1
Identif = = d = = .
entify @) = 72 = Ty rar W T AT T Ao v
Since p(x) is not analytic at = 1 (meaning there is no Taylor series with nonzero radius of convergence about = = +1),
x = %1 are singular points. Also, ¢(z) is not analytic at these points.

We need to classify these points, taking each in turn.

z=—1:
Consider (z 4 1)p(x) = T and (x+1)%q(x) = M Since (z + 1)p(x) is not analytic at x = —1, z = —1
(1—-2)1+x) (1—x)?
is an irregular singular point.
z=1:
1
Consider (z —1)p(z) = ﬁ and (z —1)%q(z) = T2 Both these are analytic at = 1, so = 1 is a regular singular

point.

Example (5.4.41) For the differential equation 2zy” + 3y’ + 2y = 0, show that = 0 is a regular singular point. Show
that there is only one nonzero solution of the form y = ZZOZO anx™. In general, for regular singular points xy there may
be no solutions of the form »°°  a, (z — zo)™.

3 1
Identif = — and = _.
entify p(x) 5y Al q(x) 5
Since p(z) is not analytic at x = 0, z = 0 is a singular point.
3 2
Consider zp(z) = 3 and 2%¢(z) = % Since both of these are analytic at x = 0, x = 0 is a regular singular point.

Assume:

o0
y = g anpx”
n=0
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o0

! Z(n + Dayi1z"
n=0
o0

i Z(n+2)(n+ D any22™
n=0

<
I

<
Il

Substitute into the differential equation:

(oo} oo oo
2x Z(n +2)(n+ Dapsox™ + 3 Z(n + Dapp12” +x Z apx” = 0
n=0 n=0 n=0
2 Z(n +2)(n + 1)ap2x™ ™ +3 Z(n + Dapr1z™ + Z anz™t = 0
n=0 n=0 n=0
Zn—i—lnanﬂx +SZ n+ Dapp12” —|—Zan " = 0
n=1 n=0 n=1
Z n+ nap12” —|—3a133 +3Z n+1)ap12" —|—Zan 1" = 0
n=1 n=1 n=1
3a1z" + Z [ n+ Dnapt1 + 3+ Dapt1 + an— 1} = 0

For this to be true for all values of z, the coefficients of powers of x must be zero. This leads to the relations:

3@1 = 0
2(n+ napt1 +3n+ Dapt1 +an—1 = 0, n=1,2,3,...

These are the recurrence relations. Solving for the coefficients, we get

Ap—1

= T oA == 1, 27 37 e
-t n+1)@n+3)
agp = unspecified, not equal to zero
ay = 0
ao
as = —
? 2.5
az = 0
a9 ap
aq, =

4.9 2.4-5.9

Finding the pattern here is difficult, and see we only need to show there is only one solution of the form > a,a™, the
important thing to note is that all the odd terms are zero, and the even terms all have the constant ag in them.

2-5 2-4-5-9

So we only get one solution, and we cannot write a general solution.

z? zt
The solution we find is y(z) = ag (1 +—Ft—+.. )

This problem shows the failure of using Taylor series when looking for a series solution about a regular singular point.



