Section 5.4: Euler's Equation; Regular Singular Points

Example (5.4.1) Determine the solution to the differential equation $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$ that is valid in any interval not containing the singular point.

The is an Euler equation (since the power of x in the coefficient is the same as the derivative), and the singular point is $x=0$.

Assume a solution looks like $y=x^{r}$.
Differentiate, and substitute into the differential equation:

$$
\begin{aligned}
y=x^{r}, y^{\prime}=r x^{r-1}, y^{\prime \prime}=r(r-1) x^{r-2} & \\
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y & =0 \\
r(r-1) x^{r}+4 r x^{r}+2 x^{r} & =0 \\
r(r-1)+4 r+2 & =0
\end{aligned}
$$

This is the indicial equation. Solving, we find $(r+2)(r+1)=0$, so the roots are $r=-2$ and $r=-1$.
The general solution is therefore $y(x)=c_{1} x^{-1}+c_{2} x^{-2}$, which is valid for $x>0$. This is also the solution if $x<0$, so the general solution is $y(x)=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}, x \neq 0$.

Example (5.4.2) Determine the solution to the differential equation $(x+1)^{2} y^{\prime \prime}+3(x+1) y^{\prime}+\frac{3}{4} y=0$ that is valid in any interval not containing the singular point.

The is an Euler equation (since the power of $x+1$ in the coefficient is the same as the derivative), and the singular point is $x=-1$.

Assume a solution looks like $y=(x+1)^{r}$.
Differentiate, and substitute into the differential equation:

$$
\begin{aligned}
y=(x+1)^{r}, \quad y^{\prime}=r(x+1)^{r-1}, \quad y^{\prime \prime}=r(r-1)(x+1)^{r-2} & \\
(x+1)^{2} y^{\prime \prime}+3(x+1) y^{\prime}+\frac{3}{4} y & =0 \\
r(r-1)(x+1)^{r}+3 r(x+1)^{r}+\frac{3}{4}(x+1)^{r} & =0 \\
r(r-1)+3 r+\frac{3}{4} & =0
\end{aligned}
$$

This is the indicial equation. Solving, we find $(r+3 / 2)(r+1 / 2)=0$, so the roots are $r=-3 / 2$ and $r=-1 / 2$.
The general solution is therefore $y(x)=c_{1}(x+1)^{-3 / 2}+c_{2}(x+1)^{-1 / 2}$, which is valid for $x>1$. For $x<1$, the solution is $y(x)=c_{1}|x+1|^{-3 / 2}+c_{2}|x+1|^{-1 / 2}$. For $x \neq 1$, the solution is $y(x)=c_{1}|x+1|^{-3 / 2}+c_{2}|x+1|^{-1 / 2}$.

Example (5.4.9) Determine the solution to the differential equation $x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0$ that is valid in any interval not containing the singular point.

The is an Euler equation (since the power of x in the coefficient is the same as the derivative), and the singular point is $x=0$.

Assume a solution looks like $y=x^{r}$.
Differentiate, and substitute into the differential equation:

$$
\begin{aligned}
y=x^{r}, \quad y^{\prime}=r x^{r-1}, & y^{\prime \prime}=r(r-1) x^{r-2} \\
& x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0
\end{aligned}
$$

$$
\begin{aligned}
r(r-1) x^{r}-5 r x^{r}+9 x^{r} & =0 \\
r(r-1)-5 r+9 & =0
\end{aligned}
$$

This is the indicial equation. Solving, we find $(r-3)^{2}=0$, so the root is $r=3$ of multiplicity 2 .
Therefore, one solution is $y_{1}(x)=x^{3}$.
If we forget the second solution looks like $y_{2}(x)=x^{3} \ln |x|$ for a repeated root, we can always work it out using reduction of order.

Assume $y(x)=v(x) y_{1}(x)=v x^{3}$.

$$
\begin{aligned}
y^{\prime} & =v^{\prime} x^{3}+3 v x^{2} \\
y^{\prime \prime} & =v^{\prime \prime} x^{3}+6 v^{\prime} x^{2}+6 v x
\end{aligned}
$$

Substitute into the differential equation, and determine v :

$$
\begin{aligned}
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y & =0 \\
x^{2}\left(v^{\prime \prime} x^{3}+6 v^{\prime} x^{2}+6 v x\right)-5 x\left(v^{\prime} x^{3}+3 v x^{2}\right)+9\left(v x^{3}\right) & =0 \\
v^{\prime \prime} x^{5}+6 v^{\prime} x^{4}+6 v x^{3}-5 v^{\prime} x^{4}-15 v x^{3}+9 v x^{3} & =0 \\
v^{\prime \prime} x+v^{\prime} & =0 \\
\frac{d v^{\prime}}{d x} x+v^{\prime} & =0 \\
\int \frac{d v^{\prime}}{v^{\prime}} & =-\int \frac{d x}{x} \\
\ln \left|v^{\prime}\right|+c_{1} & =-\ln |x| \\
\ln \left|v^{\prime}\right| & =\ln \left|x^{-1}\right|-c_{1} \\
\left|v^{\prime}\right| & =e^{-c_{1}}\left|x^{-1}\right| \\
v^{\prime} & =\frac{c_{2}}{x}, c_{2}=e^{c_{1}} \\
\int d v & =\int \frac{c_{2}}{x} d x \\
v & =c_{2} \ln |x|+c_{3}
\end{aligned}
$$

Another solution is therefore $y(x)=v(x) y_{1}(x)=c_{2} x^{3} \ln |x|+c_{3} x^{3}$. This is the general solution, and a fundamental set of solutions is $y_{1}(x)=x^{3}$ and $y_{2}(x)=x^{3} \ln |x|$, which is valid for $x \neq 0$.
Example (5.4.17) Find all the singular points of the differential equation $x y^{\prime \prime}+(1-x) y^{\prime}+x y=0$, and determine whether each one is regular or irregular.

The general form of a linear second order differential equation is $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
Identify $p(x)=\frac{1-x}{x}$ and $q(x)=\frac{x}{x}=1$.
Since $p(x)$ is not analytic at $x=0$ (meaning there is no Taylor series with nonzero radius of convergence about $x=0$), $x=0$ is a singular point.

Since $x p(x)=1-x$ and $x^{2} q(x)=x^{2}$ are both analytic at $x=0$, we have $x=0$ is a regular singular point.
Example (5.4.20) Find all the singular points of the differential equation $x^{2}\left(1-x^{2}\right) y^{\prime \prime}+\frac{2}{x} y^{\prime}+4 y=0$, and determine whether each one is regular or irregular.
The general form of a linear second order differential equation is $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
Identify $p(x)=\frac{2}{x^{3}\left(1-x^{2}\right)}$ and $q(x)=\frac{4}{x^{2}\left(1-x^{2}\right)}$.

Since $p(x)$ is not analytic at $x=0,1,-1$ (meaning there is no Taylor series with nonzero radius of convergence about $x=0,1,-1), x=0,1,-1$ are singular points. Also, $q(x)$ is not analytic at these points.
We need to classify these points, taking each in turn.
$\underline{x=0}:$
Consider $(x-0) p(x)=\frac{2}{x^{2}\left(1-x^{2}\right)}$ and $(x-0)^{2} q(x)=\frac{4}{1-x^{2}}$. Although $x^{2} q(x)$ is analytic at $x=0$, since $x p(x)$ is not analytic at $x=0$, the point $x=0$ is an irregular singular point.
$x=1$:
Consider $(x-1) p(x)=-\frac{2}{x^{3}(1+x)}$ and $(x-1)^{2} q(x)=\frac{4(1-x)}{x^{3}(1+x)}$. Both these are analytic at $x=1$, so $x=1$ is a regular singular point.
$\underline{x=-1}:$
Consider $(x+1) p(x)=\frac{2}{x^{3}(1-x)}$ and $(x+1)^{2} q(x)=\frac{4(1+x)}{x^{3}(1-x)}$. Both these are analytic at $x=-1$, so $x=-1$ is a regular singular point.
Example (5.4.21) Find all the singular points of the differential equation $\left(1-x^{2}\right)^{2} y^{\prime \prime}+x(1-x) y^{\prime}+(1+x) y=0$, and determine whether each one is regular or irregular.
The general form of a linear second order differential equation is $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
Identify $p(x)=\frac{x(1-x)}{\left(1-x^{2}\right)^{2}}=\frac{x}{(1-x)(1+x)^{2}}$ and $q(x)=\frac{(1+x)}{\left(1-x^{2}\right)^{2}}=\frac{1}{(1-x)^{2}(1+x)}$.
Since $p(x)$ is not analytic at $x= \pm 1$ (meaning there is no Taylor series with nonzero radius of convergence about $x= \pm 1$), $x= \pm 1$ are singular points. Also, $q(x)$ is not analytic at these points.

We need to classify these points, taking each in turn.
$\underline{x=-1:}$
Consider $(x+1) p(x)=\frac{x}{(1-x)(1+x)}$ and $(x+1)^{2} q(x)=\frac{(x+1)}{(1-x)^{2}}$. Since $(x+1) p(x)$ is not analytic at $x=-1, x=-1$ is an irregular singular point.
$x=1:$
Consider $(x-1) p(x)=\frac{x}{(1+x)^{2}}$ and $(x-1)^{2} q(x)=\frac{1}{1+x}$. Both these are analytic at $x=1$, so $x=1$ is a regular singular point.
Example (5.4.41) For the differential equation $2 x y^{\prime \prime}+3 y^{\prime}+x y=0$, show that $x=0$ is a regular singular point. Show that there is only one nonzero solution of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. In general, for regular singular points x_{0} there may be no solutions of the form $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$.
Identify $p(x)=\frac{3}{2 x}$ and $q(x)=\frac{1}{2}$.
Since $p(x)$ is not analytic at $x=0, x=0$ is a singular point.
Consider $x p(x)=\frac{3}{2}$ and $x^{2} q(x)=\frac{x^{2}}{2}$. Since both of these are analytic at $x=0, x=0$ is a regular singular point.
Assume:

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{aligned}
$$

Substitute into the differential equation:

$$
\begin{aligned}
2 x \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+3 \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+x \sum_{n=0}^{\infty} a_{n} x^{n} & =0 \\
2 \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n+1}+3 \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n+1} & =0 \\
2 \sum_{n=1}^{\infty}(n+1) n a_{n+1} x^{n}+3 \sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n} & =0 \\
2 \sum_{n=1}^{\infty}(n+1) n a_{n+1} x^{n}+3 a_{1} x^{0}+3 \sum_{n=1}^{\infty}(n+1) a_{n+1} x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n} & =0 \\
3 a_{1} x^{0}+\sum_{n=1}^{\infty}\left[2(n+1) n a_{n+1}+3(n+1) a_{n+1}+a_{n-1}\right] x^{n} & =0
\end{aligned}
$$

For this to be true for all values of x, the coefficients of powers of x must be zero. This leads to the relations:

$$
\begin{aligned}
3 a_{1} & =0 \\
2(n+1) n a_{n+1}+3(n+1) a_{n+1}+a_{n-1} & =0, n=1,2,3, \ldots
\end{aligned}
$$

These are the recurrence relations. Solving for the coefficients, we get

$$
\begin{aligned}
a_{n+1} & =\frac{a_{n-1}}{(n+1)(2 n+3)}, \quad n=1,2,3, \ldots \\
a_{0} & =\text { unspecified, not equal to zero } \\
a_{1} & =0 \\
a_{2} & =\frac{a_{0}}{2 \cdot 5} \\
a_{3} & =0 \\
a_{4} & =\frac{a_{2}}{4 \cdot 9}=\frac{a_{0}}{2 \cdot 4 \cdot 5 \cdot 9}
\end{aligned}
$$

Finding the pattern here is difficult, and see we only need to show there is only one solution of the form $\sum a_{n} x^{n}$, the important thing to note is that all the odd terms are zero, and the even terms all have the constant a_{0} in them.
The solution we find is $y(x)=a_{0}\left(1+\frac{x^{2}}{2 \cdot 5}+\frac{x^{4}}{2 \cdot 4 \cdot 5 \cdot 9}+\ldots\right)$.
So we only get one solution, and we cannot write a general solution.
This problem shows the failure of using Taylor series when looking for a series solution about a regular singular point.

