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Section 5.6: Regular Singular Points Part II

Example (5.6.1) Determine the exponents of the singularity for the differential equation xy′′ + 2xy′ + 6exy = 0 about
x0 = 0.

Identify p(x) =
2x

x
= 2 and q(x) =

6ex

x
.

Since p(x) is not analytic at x0 = 0, we have x0 = 0 as a singular point. Since xp(x) = 2x and x2q(x) = 6xex are both
analytic at x0 = 0, we have x0 = 0 as a regular singular point.

The exponents of the singularity are the solutions to the indicial equation, and the indicial equation can be found from
the associated Euler equation. We need the Taylor series expansions of xp(x) and x2q(x):

xp(x) = 2x

=
∞∑

n=0

pnxn

= p0 + p1x + p2x
2 + p3x

3 + · · ·

so p0 = 0 (the only nonzero coefficient is p1 = 2).

x2q(x) = 6xex

= 6x
∞∑

n=0

xn

n!

= 6x + 6x2 + 6
x3

2
+ · · ·

=
∞∑

n=0

qnxn

= q0 + q1x + q2x
2 + q3x

3 + · · ·

so q0 = 0.

The associated Euler equation replaces xp(x) ∼ p0 and x2q(x) ∼ q0, so our equation becomes:

xy′′ + 2xy′ + 6exy = 0
x2y′′ + x · 2xy′ + 6xexy = 0

x2y′′ + x · p0y
′ + q0y = 0 associated Euler equation

x2y′′ + x · (0)y′ + (0)y = 0
x2y′′ = 0 (1)

This can be solved by assuming y = xr; y′′ = r(r − 1)xr−2, so substituting into Eq. (1),

x2r(r − 1)xr = 0
r(r − 1) = 0 indicial equation

So the exponents at the singularity are r1 = 0 and r2 = 1.

Example (5.6.11) Find the exponents at the singularity for all the regular singular points of the differential equation
(4− x2)y′′ + 2xy′ + 3y = 0.

First, we need to find the regular singular points.
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Identify p(x) =
2x

4− x2
=

2x

(2− x)(2 + x)
and q(x) =

3
4− x2

=
3

(2− x)(2 + x)
.

Since p(x) is not analytic at x0 = ±2, we have x0 = ±2 as singular points. These are also the singular points for q(x).

Consider x = +2:

Since (x − 2)p(x) = − 2x

2 + x
and (x − 2)2q(x) = −3(x− 2)

2 + x
are both analytic at x0 = +2, we have x0 = +2 as a regular

singular point.

Consider x = −2:

Since (x + 2)p(x) =
2x

2− x
and (x + 2)2q(x) =

3(x + 2)
2− x

are both analytic at x0 = −2, we have x0 = −2 as a regular

singular point.

OK, now we need to determine the exponents at the singularity for each regular singular point.

Consider x = +2:

The exponents of the singularity are the solutions to the indicial equation, and the indicial equation can be found from
the associated Euler equation. We need the Taylor series expansions of (x− 2)p(x) and (x− 2)2q(x):

(x− 2)p(x) = − 2x

2 + x

= −1− 1
4
(x− 2) +

1
16

(x− 2)2 + · · · Taylor series about x0 = −2

= p0 + p1(x− 2) + p2(x− 2)2 + p3(x− 2)3 + · · ·

so p0 = −1.

(x− 2)2q(x) = −3(x− 2)
2 + x

= 0− 3
4
(x− 2) +

3
16

(x− 2)3 − · · · Taylor series about x0 = −2

= q0 + q1(x− 2) + q2(x− 2)2 + q3(x− 2)3 + · · ·

so q0 = 0.

The associated Euler equation replaces (x− 2)p(x) ∼ p0 and (x− 2)2q(x) ∼ q0, so our equation becomes:

(4− x2)y′′ + 2xy′ + 3y = 0

y′′ +
2x

(2− x)(2 + x)
y′ +

3
(2− x)(2 + x)

y = 0

(x− 2)2y′′ + (x− 2) · (x− 2)
2x

(2− x)(2 + x)
y′ + (x− 2)2

3
(2− x)(2 + x)

y = 0

(x− 2)2y′′ − (x− 2) · 2x

2 + x
y′ − 3(x− 2)

2 + x
y = 0

(x− 2)2y′′ + (x− 2)p0y
′ + q0y = 0 associated Euler equation

(x− 2)2y′′ + (x− 2)(−1)y′ + (0)y = 0
(x− 2)2y′′ − (x− 2)y′ = 0 (2)

This can be solved by assuming y = (x− 2)r; y′ = r(x− 2)r−1, y′′ = r(r − 1)(x− 2)r−2, so substituting into Eq. (2),

(x− 2)2r(r − 1)(x− 2)r−2 − (x− 2)r(x− 2)r−1 = 0
r(r − 1)− r = 0 indicial equation

r(r − 2) = 0
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So the exponents at the singularity x0 = −2 are r1 = 0 and r2 = 2.

Consider x = −2:

The exponents of the singularity are the solutions to the indicial equation, and the indicial equation can be found from
the associated Euler equation. We need the Taylor series expansions of (x + 2)p(x) and (x + 2)2q(x):

(x + 2)p(x) =
2x

2− x

= −1 +
1
4
(x + 2) +

1
16

(x + 2)2 + · · · Taylor series about x0 = +2

= p0 + p1(x + 2) + p2(x + 2)2 + p3(x + 2)3 + · · ·

so p0 = −1.

(x + 2)2q(x) =
3(x + 2)
2− x

= 0 +
3
4
(x + 2) +

3
16

(x + 2)3 − · · · Taylor series about x0 = +2

= q0 + q1(x + 2) + q2(x + 2)2 + q3(x + 2)3 + · · ·

so q0 = 0.

The associated Euler equation replaces (x + 2)p(x) ∼ p0 and (x + 2)2q(x) ∼ q0, so our equation becomes:

(4− x2)y′′ + 2xy′ + 3y = 0

y′′ +
2x

(2− x)(2 + x)
y′ +

3
(2− x)(2 + x)

y = 0

(x + 2)2y′′ + (x + 2) · (x + 2)
2x

(2− x)(2 + x)
y′ + (x + 2)2

3
(2− x)(2 + x)

y = 0

(x + 2)2y′′ + (x + 2) · 2x

2− x
y′ +

3(x + 2)
2− x

y = 0

(x + 2)2y′′ + (x + 2)p0y
′ + q0y = 0 associated Euler equation

(x + 2)2y′′ + (x + 2)(−1)y′ + (0)y = 0
(x + 2)2y′′ − (x + 2)y′ = 0 (3)

This can be solved by assuming y = (x + 2)r; y′ = r(x + 2)r−1, y′′ = r(r − 1)(x + 2)r−2, so substituting into Eq. (3),

(x + 2)2r(r − 1)(x + 2)r−2 − (x + 2)r(x + 2)r−1 = 0
r(r − 1)− r = 0 indicial equation

r(r − 2) = 0

So the exponents at the singularity x0 = −2 are r1 = 0 and r2 = 2.

If we can remember the following form, we can get the indicial equation directly from F (r) = r(r − 1) + p0r + q0, which
is the from of the indicial equation for the associated Euler equation. If we forget it, we can use the process described in
the solutions to create and solve the associated Euler equation.


