Section 6.3 Step Functions

Example (6.3.4) See Mathematica notebook for sketch.
Example (6.3.7) Find the Laplace transform of $f(t)=\left\{\begin{array}{ll}0, & t<2 \\ (t-2)^{2}, & t \geq 2\end{array}\right.$.
We want to write $f(t)$ in terms of $u_{c}(t)$ so we can use our table of Laplace transforms.

$$
\begin{aligned}
& f(t)=u_{2}(t)(t-2)^{2} \\
& \mathcal{L}[f(t)]
\end{aligned} \begin{aligned}
& =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{\infty} e^{-s t} u_{2}(t)(t-2)^{2} d t \\
& =\int_{2}^{\infty} e^{-s t}(t-2)^{2} d t
\end{aligned}
$$

use Mathematica to do the integral, or use parts

$$
=\frac{2 e^{-2 s}}{s^{3}}, \quad s>0
$$

Example (6.3.18) Find the inverse Laplace transform of $F(s)=\frac{e^{-s}+e^{-2 s}-e^{-3 s}-e^{-4 s}}{s}$.
Here we just need to use Table 6.2.1 \#12 repeatedly.

$$
\begin{aligned}
\mathcal{L}[f(t)] & =\mathcal{L}^{-1}\left[\frac{e^{-s}}{s}\right]+\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s}\right]-\mathcal{L}^{-1}\left[\frac{e^{-3 s}}{s}\right]-\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s}\right] \\
& =u_{1}(t)+u_{2}(t)-u_{3}(t)-u_{4}(t)
\end{aligned}
$$

