Section 7.3 Eigensystems

Example (7.3.15) Find all the eigenvalues and eigenvectors for the matrix $A=\left(\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right)$.
First, we get the eigenvalues by solving the equation $\operatorname{det}(A-\lambda I)=0$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left(\begin{array}{rr}
5 & -1 \\
3 & 1
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) & =0 \\
\operatorname{det}\left(\begin{array}{rr}
5-\lambda & -1 \\
3 & 1-\lambda
\end{array}\right) & =0 \\
(5-\lambda)(1-\lambda)+3 & =0 \\
(\lambda-2)(\lambda-4) & =0
\end{aligned}
$$

So the eigenvalues of the matrix are $\lambda^{(1)}=2$ and $\lambda^{(2)}=4$.
We now get eigenvectors associated with each eigenvalue.
For $\lambda^{(1)}=2$:
Solve the equation $\left(A-\lambda^{(1)} I\right) \xi=0$.

$$
\begin{aligned}
\left(A-\lambda^{(1)} I\right) \xi & =0 \\
\left(\begin{array}{rr}
5-2 & -1 \\
3 & 1-2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}} & =\binom{0}{0} \\
\left(\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}} & =\binom{0}{0} \\
& \Longrightarrow 3 \xi_{1}-\xi_{2}=0 \text { and } 3 \xi_{1}-\xi_{2}=0
\end{aligned}
$$

So we have one equation in two unknowns. The systems is underdetermined.
Choose ξ_{1} to be arbitrary. Let's choose $\xi_{1}=1$. Therefore, $\xi_{2}=3 \xi_{1}=3(1)=3$.
So the eigenvalue $\lambda^{(1)}=2$ has associated eigenvector $\xi^{(1)}=\binom{1}{3}$.
For $\lambda^{(2)}=4$:
Solve the equation $\left(A-\lambda^{(2)} I\right) \xi=0$.

$$
\begin{aligned}
\left(A-\lambda^{(2)} I\right) \xi & =0 \\
\left(\begin{array}{rr}
5-4 & -1 \\
3 & 1-4
\end{array}\right)\binom{\xi_{1}}{\xi_{2}} & =\binom{0}{0} \\
\left(\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}= & \binom{0}{0} \\
& \Longrightarrow \xi_{1}-\xi_{2}=0 \text { and } 3 \xi_{1}-3 \xi_{2}=0
\end{aligned}
$$

So we have one equation in two unknowns (these equations are not independent). The systems is underdetermined.
Choose ξ_{1} to be arbitrary. Let's choose $\xi_{1}=1$. Therefore, $\xi_{2}=\xi_{1}=1$.
So the eigenvalue $\lambda^{(2)}=4$ has associated eigenvector $\xi^{(2)}=\binom{1}{1}$.
See the Mathematica file for the geometric meaning of the eigenvalues and eigenvectors for this matrix.

Example (7.3.18) Find all the eigenvalues and eigenvectors for the matrix $A=\left(\begin{array}{rr}1 & i \\ -i & 1\end{array}\right)$.
First, we get the eigenvalues by solving the equation $\operatorname{det}(A-\lambda I)=0$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left(\begin{array}{rr}
1 & i \\
-i & 1
\end{array}\right)-\lambda\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right) & =0 \\
\operatorname{det}\left(\begin{array}{rr}
1-\lambda & i \\
-i & 1-\lambda
\end{array}\right) & =0 \\
(1-\lambda)^{2}+i^{2} & =0 \\
(1-\lambda)^{2}-1 & =0 \\
(\lambda-0)(\lambda-2) & =0
\end{aligned}
$$

So the eigenvalues of the matrix are $\lambda^{(1)}=0$ and $\lambda^{(2)}=2$.
We now get eigenvectors associated with each eigenvalue.
For $\lambda^{(1)}=0$:
Solve the equation $\left(A-\lambda^{(1)} I\right) \xi=0$.

$$
\begin{aligned}
\left(A-\lambda^{(1)} I\right) \xi & =0 \\
\left(\begin{array}{rr}
1-0 & i \\
-i & 1-0
\end{array}\right)\binom{\xi_{1}}{\xi_{2}} & =\binom{0}{0} \\
\left(\begin{array}{rr}
1 & i \\
-i & 1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}} & =\binom{0}{0} \\
& \Longrightarrow \xi_{1}+i \xi_{2}=0 \text { and }-i \xi_{1}+\xi_{2}=0
\end{aligned}
$$

So we have one equation in two unknowns (these equations are not independent). The systems is underdetermined.
Choose ξ_{1} to be arbitrary. Let's choose $\xi_{1}=1$. Therefore, $\xi_{2}=i \xi_{1}=i(1)=-i$.
So the eigenvalue $\lambda^{(1)}=0$ has associated eigenvector $\xi^{(1)}=\binom{1}{i}$.
For $\lambda^{(2)}=2$:
Solve the equation $\left(A-\lambda^{(2)} I\right) \xi=0$.

$$
\begin{aligned}
\left(A-\lambda^{(2)} I\right) \xi & =0 \\
\left(\begin{array}{rr}
1-2 & i \\
-i & 1-2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}} & =\binom{0}{0} \\
\left(\begin{array}{rr}
-1 & i \\
-i & -1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}} & =\binom{0}{0} \\
& \Longrightarrow-\xi_{1}+i \xi_{2}=0 \text { and }-i \xi_{1}-\xi_{2}=0
\end{aligned}
$$

So we have one equation in two unknowns (these equations are not independent). The systems is underdetermined.
Choose ξ_{1} to be arbitrary. Let's choose $\xi_{1}=1$. Therefore, $\xi_{2}=-\xi_{1}=-i$.
So the eigenvalue $\lambda^{(2)}=2$ has associated eigenvector $\xi^{(2)}=\binom{1}{-i}$.

Example (7.3.21) Find all the eigenvalues and eigenvectors for the matrix $A=\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1\end{array}\right)$.
First, we get the eigenvalues by solving the equation $\operatorname{det}(A-\lambda I)=0$.

$$
\begin{aligned}
\operatorname{det}\left(\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right)-\lambda\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right) & =0 \\
\operatorname{det}\left(\begin{array}{rrr}
1-\lambda & 0 & 0 \\
2 & 1-\lambda & -2 \\
3 & 2 & 1-\lambda
\end{array}\right) & =0 \\
\lambda^{3}-3 \lambda^{2}+7 \lambda-5 & =0
\end{aligned}
$$

With some Mathematica assistance, we find $\lambda^{(1)}=1, \lambda^{(2)}=1-2 i$, and $\lambda^{(3)}=1+2 i$. Note that the complex eigenvalues appear as complex conjugate pairs, which is not unexpected since our matrix A is real-valued.
We now get eigenvectors associated with each eigenvalue.
$\underline{\text { For } \lambda^{(1)}=1}$:
Solve the equation $\left(A-\lambda^{(1)} I\right) \xi=0$.

$$
\begin{aligned}
\left(A-\lambda^{(1)} I\right) \xi & =0 \\
\left(\begin{array}{rrr}
1-\lambda & 0 & 0 \\
2 & 1-\lambda & -2 \\
3 & 2 & 1-\lambda
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{rrr}
0 & 0 & 0 \\
2 & 0 & -2 \\
3 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Longrightarrow 2 \xi_{1}-2 \xi_{3}=0 \text { and } 3 \xi_{1}+2 \xi_{2}=0
\end{aligned}
$$

So we have two equations in three unknowns. The systems is underdetermined. We have one arbitrary constant.
Choose ξ_{3} to be arbitrary. Let's choose $\xi_{3}=1$. Therefore, $\xi_{1}=\xi_{3}=1$ and $\xi_{2}=-3 \xi_{3} / 2=-3 / 2$.
So the eigenvalue $\lambda^{(1)}=1$ has associated eigenvector $\xi^{(1)}=\left(\begin{array}{r}1 \\ -3 / 2 \\ 1\end{array}\right)$.
For $\lambda^{(2)}=1-2 i$:
Solve the equation $\left(A-\lambda^{(2)} I\right) \xi=0$.

$$
\begin{aligned}
\left(A-\lambda^{(1)} I\right) \xi & =0 \\
\left(\begin{array}{rrr}
1-\lambda & 0 & 0 \\
2 & 1-\lambda & -2 \\
3 & 2 & 1-\lambda
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{rrr}
2 i & 0 & 0 \\
2 & 2 i & -2 \\
3 & 2 & 2 i
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right) & =\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Longrightarrow 2 i \xi_{1}=0 \text { and } 2 \xi_{1}+2 i \xi_{2}-2 \xi_{3}=0 \text { and } 3 \xi_{1}+2 \xi_{2}+2 i \xi_{3}=0
\end{aligned}
$$

So $\xi_{1}=0$. Therefore, we are left with

$$
2 i \xi_{2}-2 \xi_{3}=0 \text { and } 2 \xi_{2}+2 i \xi_{3}=0
$$

These two equations are not independent; the first is the second times i. Therefore, we have one equation in two unknowns. The systems is underdetermined. We have one arbitrary constant.

Choose ξ_{2} to be arbitrary. Let's choose $\xi_{2}=1$. Therefore, $\xi_{3}=i \xi_{2}=i$.
So the eigenvalue $\lambda^{(2)}=1-2 i$ has associated eigenvector $\xi^{(2)}=\left(\begin{array}{c}0 \\ 1 \\ i\end{array}\right)$.
Since A is real-valued, we know the complex eigenvalues and eigenvectors will occur in complex conjugate pairs. Therefore, the eigenvalue $\lambda^{(3)}=1+2 i$ has associated eigenvector $\xi^{(3)}=\left(\begin{array}{r}0 \\ 1 \\ -i\end{array}\right)$.

