Section 7.4 Basic Theory of Systems of 1st Order Linear Equations

Example (7.4.4) If $x_{1}=y$ and $x_{2}=y^{\prime}$, then the second order equation

$$
\begin{equation*}
y^{\prime}+p(t) y^{\prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

corresponds to the system

$$
\begin{align*}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-q(t) x_{1}-p(t) x_{2} \tag{2}
\end{align*}
$$

Show that if $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are a fundamental set of solutions of Eq. (2), and if $y^{(1)}$ and $y^{(2)}$ are a fundamental set of solutions of Eq. (1), then $W\left(y^{(1)}, y^{(2)}\right)=c W\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right)$ where c is a nonzero constant.

This problem is asking us to look at the relationship between the two ways of calculating a Wronskian we have seen in this course. Let's get on it!

Since the $y^{(1)}$ and $y^{(2)}$ form a fundamental set of solutions to Eq. (1), we know $W\left(y^{(1)}, y^{(2)}\right) \neq 0$.

$$
W\left(y^{(1)}, y^{(2)}\right)=\operatorname{det}\left(\begin{array}{ll}
y^{(1)} & y^{(2)} \\
\left(y^{(1)}\right)^{\prime} & \left(y^{(2)}\right)^{\prime}
\end{array}\right)=y^{(1)}\left(y^{(2)}\right)^{\prime}-y^{(2)}\left(y^{(1)}\right)^{\prime}
$$

Also, since $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are a fundamental set of solutions of Eq. (2), we know $W\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right) \neq 0$.

$$
W\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right)=\operatorname{det}\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)=x_{11} x_{22}-x_{12} x_{21}
$$

where

$$
\mathbf{x}^{(1)}=\binom{x_{11}}{x_{21}}, \mathbf{x}^{(2)}=\binom{x_{12}}{x_{22}}
$$

To find the relationship between the Wronskians, we must find the relationship between the solutions.
Note that $x_{1}=y$ and $x_{2}=y^{\prime}$, so we have $\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{y}{y^{\prime}}$.
Therefore, $\mathbf{x}^{(\mathbf{1})}=\binom{x_{11}}{x_{21}}=c_{1}\binom{y^{(1)}}{\left(y^{(1)}\right)^{\prime}}$ and $\mathbf{x}^{(\mathbf{2})}=\binom{x_{12}}{x_{22}}=c_{2}\binom{y^{(2)}}{\left(y^{(2)}\right)^{\prime}}$. Note the two solutions could differ by a nonzero constant.
So we have $y^{(1)}=c_{1} x_{11}, y^{(2)}=c_{2} x_{12},\left(y^{(1)}\right)^{\prime}=c_{1} x_{21}$, and $\left(y^{(2)}\right)^{\prime}=c_{2} x_{22}$. Therefore,

$$
\begin{aligned}
W\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right) & =x_{11} x_{22}-x_{12} x_{21} \\
& =\frac{1}{c_{1} c_{2}}\left(y^{(1)}\left(y^{(2)}\right)^{\prime}-y^{(2)}\left(y^{(1)}\right)^{\prime}\right) \\
& =c W\left(y^{(1)}, y^{(2)}\right)
\end{aligned}
$$

