Theorem 1 Existence and Uniqueness Theorem (Theorem 3.2.1) Consider the initial value problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

where p, q and g are continuous on an open interval I. Then there exists exactly one solution $y=\phi(t)$ of this problem, and the solution exists throughout the interval I.

Theorem 2 Principle of Superposition (Theorem 3.2.2) If y_{1} and y_{2} are two solutions of the differential equation

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t)=0,
$$

then the linear combination $y(t)=c_{1} y_{1}+c_{2} y_{2}$ is also a solution for any values of the constants c_{1} and c_{2}.
Theorem 3 (Theorem 3.2.3) Suppose that y_{1} and y_{2} are two solutions of

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

and that the Wronskian

$$
W=y_{1} y^{\prime}{ }_{2}-y^{\prime}{ }_{1} y_{2},
$$

is not zero at the point t_{0} where the initial conditions $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y^{\prime}{ }_{0}$ are assigned. Then there is a choice of constant c_{1} and c_{2} for which $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ satisfies the associated IVP.

Theorem 4 (Theorem 3.2.4) If y_{1} and y_{2} are two solutions of the DE:

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

and if there is a point t_{0} where the Wronskian of y_{1} and y_{2} is nonzero, then the family of solutions

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

with arbitrary coefficients c_{1} and c_{2} includes every solution of the $D E$.
Theorem 5 (Theorem 3.2.5) Consider the $D E$

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

whose coefficients p, q are continuous on some open interval I. Choose some point t_{0} in I. Let y_{1} be the solution of the DE that also satisfies the initial conditions:

$$
y\left(t_{0}\right)=1, \quad y^{\prime}\left(t_{0}\right)=0
$$

and let y_{2} be the solution of the DE that also satisfies the initial conditions:

$$
y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=1
$$

Then y_{1} and y_{2} form a fundamental set of solutions for the DE.

Here is a concept map of how the theorems relate. In what follows we have
DE: $\quad y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0$,
IVP: $\quad y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$.
where p, q and g are continuous in an interval I.
Note that Theorem 3.2.1 also applies to nonhomogeneous linear differential equations.

A unique solution exists to the IVP (Theorem 3.2.1)

Two solutions to the DE are known, $\mathrm{y} 1(\mathrm{t})$ and $\mathrm{y} 2(\mathrm{t}) \quad$ (finding these solutions is majority of work in coming chapters)

Is Wronskian $\mathrm{W}(\mathrm{y} 1, \mathrm{y} 2)$ equal to zero?

Then $\mathrm{c} 1 \mathrm{y} 1(\mathrm{t})+\mathrm{c} 2 \mathrm{y} 2(\mathrm{t})$ is a solution to the IVP

Then $\mathrm{y}(\mathrm{t})=\mathrm{c} 1 \mathrm{y} 1(\mathrm{t})+\mathrm{c} 2 \mathrm{y} 2(\mathrm{t})$ is a general solution to the DE
(Theorem 3.2.4)

The DE always has a fundamental set of solutions
Theorem 6 Abel's Theorem (Theorem 3.2.6) If y_{1} and y_{2} are solutions of the differential equation

$$
L[y](t)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where p and q are continuous on an open interval I, then the Wronskian $W\left(y_{1}, y_{2}\right)(t)$ is given by:

$$
W\left(y_{1}, y_{2}\right)(t)=c \exp \left[-\int p(t) d t\right],
$$

where c is a certain constant that depends on y_{1}, y_{2}, but not on t. Further, $W\left(y_{1}, y_{2}\right)(t)$ is either zero for all t in I (if $c=0)$ or else is never zero in I (if $c \neq 0)$.

