Theorem 1 Existence and Uniqueness Theorem (Theorem 3.2.1) Consider the initial value problem

$$y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = y_0, \quad y'(t_0) = y'_0$$

where p, q and g are continuous on an open interval I. Then there exists exactly one solution  $y = \phi(t)$  of this problem, and the solution exists throughout the interval I.

**Theorem 2 Principle of Superposition (Theorem 3.2.2)** If  $y_1$  and  $y_2$  are two solutions of the differential equation

$$L[y] = y'' + p(t)y' + q(t) = 0,$$

then the linear combination  $y(t) = c_1y_1 + c_2y_2$  is also a solution for any values of the constants  $c_1$  and  $c_2$ .

**Theorem 3 (Theorem 3.2.3)** Suppose that  $y_1$  and  $y_2$  are two solutions of

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

and that the Wronskian

$$W = y_1 y'_2 - y'_1 y_2,$$

is not zero at the point  $t_0$  where the initial conditions  $y(t_0) = y_0$ ,  $y'(t_0) = y'_0$  are assigned. Then there is a choice of constant  $c_1$  and  $c_2$  for which  $y = c_1y_1(t) + c_2y_2(t)$  satisfies the associated IVP.

**Theorem 4** (Theorem 3.2.4) If  $y_1$  and  $y_2$  are two solutions of the DE:

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

and if there is a point  $t_0$  where the Wronskian of  $y_1$  and  $y_2$  is nonzero, then the family of solutions

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

with arbitrary coefficients  $c_1$  and  $c_2$  includes every solution of the DE.

**Theorem 5 (Theorem 3.2.5)** Consider the DE

L[y] = y'' + p(t)y' + q(t)y = 0,

whose coefficients p, q are continuous on some open interval I. Choose some point  $t_0$  in I. Let  $y_1$  be the solution of the DE that also satisfies the initial conditions:

 $y(t_0) = 1, \qquad y'(t_0) = 0,$ 

and let  $y_2$  be the solution of the DE that also satisfies the initial conditions:

$$y(t_0) = 0, \qquad y'(t_0) = 1.$$

Then  $y_1$  and  $y_2$  form a fundamental set of solutions for the DE.

Here is a concept map of how the theorems relate. In what follows we have

DE: 
$$y''(t) + p(t)y'(t) + q(t)y(t) = 0,$$
  
IVP:  $y''(t) + p(t)y'(t) + q(t)y(t) = 0,$   $y(t_0) = y_0,$   $y'(t_0) = y'_0$ 

where p, q and g are continuous in an interval I.

Note that Theorem 3.2.1 also applies to nonhomogeneous linear differential equations.



The DE always has a fundamental set of solutions (*Theorem 3.2.5*)

**Theorem 6 Abel's Theorem (Theorem 3.2.6)** If  $y_1$  and  $y_2$  are solutions of the differential equation

$$L[y](t) = y'' + p(t)y' + q(t)y = 0,$$

where p and q are continuous on an open interval I, then the Wronskian  $W(y_1, y_2)(t)$  is given by:

$$W(y_1, y_2)(t) = c \exp\left[-\int p(t)dt\right],$$

where c is a certain constant that depends on  $y_1, y_2$ , but not on t. Further,  $W(y_1, y_2)(t)$  is either zero for all t in I (if c = 0) or else is never zero in I (if  $c \neq 0$ ).