3.5 Nonhomogeneous Equations

The 2nd order linear nonhomogeneous equation with variable coefficients is

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

where p, q, g are continuous on I.
The associated homogeneous equation is

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

The following theorems provide the basis for solving the nonhomogeneous general solution.
Theorem 1 3.5.1 If Y_{1} and Y_{2} are two solutions of the nonhomogeneous equation

$$
L[y](t)=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

then their difference is a solution of the corresponding homogeneous equation

$$
L[y](t)=0 .
$$

If, in addition, y_{1} and y_{2} are a fundamental set of solutions of the homogeneous equation, then

$$
Y_{1}(t)-Y_{2}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

where c_{1} and c_{2} are constants.
Theorem 2 3.5.2 The general solution of the nonhomogeneous equation can be written in the form

$$
y=\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)
$$

where y_{1} and y_{2} are a fundamental set of solutions of the corresponding homogeneous equation, c_{1} and c_{2} are arbitrary constants, and $Y(t)$ is some specific solution of the nonhomogeneous equation.

The Process to solve second order nonhomogeneous equations:

1. Find the general solution of the corresponding homogeneous equation. This solution is called the complementary solution, and is denoted $y_{c}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$.
2. Find some singular solution $Y(t)$ of the nonhomogeneous equation. This is called the particular solution, and is denoted $y_{p}(t)=Y(t)$.
3. The general solution to the nonhomogeneous equation is given by $y(t)=y_{c}(t)+y_{p}(t)$.

Note: If you are solving an initial value problem, it is $y(t)=y_{c}(t)+y_{p}(t)$ on which the initial conditions are applied. Therefore, you must get the general solution to the nonhomogeneous equation before you use the initial conditions to determine the constants c_{1} and c_{2}.
For homogeneous constant coefficient differential equations, we know how to determine the general solution. So we can find $y_{c}(t)$ for equations of the form $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$. To get the particular solution $y_{p}(t)$, we will use one of two methods (there are others): Undetermined Coefficients, or Variation of Parameters.

Example Find the general solution of the $\operatorname{DE} u^{\prime \prime}+w_{0}^{2} u=\cos (w t)$, where $w_{0}^{2} \neq w^{2}$.
First, solve the associated homogeneous equation $u^{\prime \prime}+w_{0}^{2} u=0$.
Assume $u=e^{r t}$, since this is a constant coefficient linear differential equation.
Substitute into the DE: $r^{2} e^{r t}+w_{0}^{2} e^{r t}=0$.
Characteristic equation: $r^{2}+w_{0}^{2}=0$.
Roots of the characteristic equation are complex: $r= \pm w_{0}=\lambda \pm \mu$. Therefore, $\lambda=0, \mu=w_{0}$.
A fundamental set of solutions is $u_{1}=\cos w_{0} t, u_{2}=\sin w_{0} t$.
The complementary solution is therefore $u_{c}(t)=c_{1} \cos w_{0} t+c_{2} \sin w_{0} t$.
Get a particular solution of the nonhomogeneous equation. Assume $U(t)=A \cos w t+B \sin w t$. There is no overlap with the complementary solution, so this will work. Substitute into the DE:

$$
\begin{aligned}
u^{\prime \prime}+w_{0}^{2} u & =\cos (w t) \\
\left(-A w^{2} \cos w t-B w^{2} \sin w t\right)+w_{0}^{2}(A \cos w t+B \sin w t) & =\cos w t \\
{\left[A\left(w_{0}^{2}-w^{2}\right)-1\right] \cos w t+\left[B\left(w_{0}^{2}-w^{2}\right)\right] \sin w t } & =0
\end{aligned}
$$

For this to be true for all values of t, the coefficients of the functions of t must be zero. This gives us the two equations for the two unknowns A, B.

$$
\begin{aligned}
& A\left(w_{0}^{2}-w^{2}\right)-1=0 \quad \longrightarrow \quad A=\frac{1}{w_{0}^{2}-w^{2}} \\
& B\left(w_{0}^{2}-w^{2}\right)=0 \quad \longrightarrow \quad B=0
\end{aligned}
$$

The particular solution of the nonhomogeneous DE is $y_{p}(t)=\frac{1}{w_{0}^{2}-w^{2}} \cos w t$.
The general solution is $y(t)=y_{c}(t)+y_{p}(t)=c_{1} \cos w_{0} t+c_{2} \sin w_{0} t+\frac{1}{w_{0}^{2}-w^{2}} \cos w t$.
Example Find a particular solution of the DE $u^{\prime \prime}+w_{0}^{2} u=\cos \left(w_{0} t\right) e^{t}$.
First, solve the associated homogeneous equation $u^{\prime \prime}+w_{0}^{2} u=0$.
This is the same as in the previous problem. The complementary solution is therefore $u_{c}(t)=c_{1} \cos w_{0} t+c_{2} \sin w_{0} t$. Get a particular solution of the nonhomogeneous equation. Assume $U(t)=\left(\bar{A} \cos w_{0} t+\bar{B} \sin w_{0} t\right)\left(\bar{C} e^{t}\right)=$ $A e^{t} \cos w_{0} t+B e^{t} \sin w_{0} t$. This does not have overlap with the complementary solution, so it should be a solution of the nonhomogeneous equation.
Substitute into the DE; use Mathematica to help with derivatives and simplification (Mathematica notebook online). The differential equation becomes: $e^{t} \sin w_{0} t\left(B-2 A w_{0}\right)+e^{t} \cos w_{0} t\left(A+2 B w_{0}\right)=e^{t} \cos w_{0} t$.

To make this true for all values of t, we equate coefficients of similar functions of t, and we have:

$$
\begin{array}{ll}
B-2 A w_{0}=0 \Longrightarrow \text { (use Cramer's Rule; details left out) } & A=\frac{1}{1+4 w_{0}^{2}} \\
A+2 B w_{0}=1 & B=\frac{2 w_{0}}{1+4 w_{0}^{2}}
\end{array}
$$

The particular solution of the nonhomogeneous DE is $y_{p}(t)=\left(\frac{1}{1+4 w_{0}^{2}} \cos w_{0} t+\frac{2 w_{0}}{1+4 w_{0}^{2}} \sin w_{0} t\right) e^{t}$.

