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Section 5.2 Series Solution Near Ordinary Point

We are interested in second order homogeneous linear differential equations with variable coefficients.

• Consider the differential equation:

P (x)y′′ +Q(x)y′ +R(x)y = 0.

• To simplify our lives, we will consider P,Q,R to be polynomials, although this method works for any analytic
functions P,Q,R.

• If the function is not a polynomial but is analytic, for example P (x) = sinx, we must replace P (x) with its
Taylor series.

• Suppose we wish to find a solution near x = x0. The solution in an interval I about x0 is closely dependent
on the behaviour of P in that region.

• If x0 is such that P (x0) 6= 0, then since P is continuous, there is an interval around x0 where P (x) 6= 0, and
so we can divide by P (x) and then look for a solution in that interval:

y′′ + p(x)y′ + q(x)y = 0

• According to the existence and uniqueness theorems, there exists a unique solution to this differential
equation in the interval that satisfies the initial conditions y(x0) = y0, y

′(x0) = y′0.

• Finding these solutions can be difficult, and the difficulty depends on what point you assume a series solution
is about.

Classifying Points (from 5.4)

For the differential equation y′′ + p(x)y′ + q(x)y = 0, we classify the point x0 in the following manner.

1. If p(x) and q(x) are analytic at x0 (remember, analytic at x0 means the functions have a Taylor series with
nonzero radius of convergence), then the point x0 is called an ordinary point of the differential equation.

2. If x0 is not an ordinary point, it is a singular point.

3. If x0 is a singular point and (x−x0)p(x) and (x−x0)2q(x) are analytic at x0, then x0 is a regular singular point.

4. If x0 is singular but not regular, it is called an irregular singular point.

The type of series solution you assume depends on the classification of the point you are expanding about.

We will look at solutions about ordinary points and regular singular points.

Solutions about irregular singular points require more advanced techniques (asymptotics and dominant balance),
and there is no comprehensive theory for finding the solution.
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Advanced Mathematical Methods for Scientists and Engineers (Asymptotic Methods and Perturbation Theory),
Bender and Orszag. It was reprinted in 1999, and I think it is a wonderful book.

You can also classify the point x0 =∞ by making the transformation x = 1/t. This is called finding singularities
at infinity.

Example Consider the differential equation (x+ 2)2(x− 1)y′′ + 3(x− 1)y′ − 2(x+ 2)y = 0. Find and classify all
the singular points.

Identify

p(x) =
Q(x)

P (x)
=

3(x− 1)

(x+ 2)2(x− 1)
=

3

(x+ 2)2

which has a singular point at x0 = −2, and

q(x) =
R(x)

P (x)
=

−2(x+ 2)

(x+ 2)2(x− 1)
=

−2

(x+ 2)(x− 1)

which has singular points at x0 = −2,+1.

The singular points are x0 = −2,+1.

Classify: x0 = −2:

(x− x0)p(x) = (x+ 2)
3

(x+ 2)2
=

3

x+ 2

(x− x0)2q(x) = (x+ 2)2
−2

(x+ 2)(x− 1)
=
−2(x+ 2)

x− 1

The second has a convergent Taylor series about x0 = −2, but the first does not. Therefore x0 = −2 is an
irregular singular point.

Classify: x0 = +1:

(x− x0)p(x) = (x− 1)
3

(x+ 2)2
=

3(x− 1)

(x+ 2)2

(x− x0)2q(x) = (x− 1)2
−2

(x+ 2)(x− 1)
=
−2(x− 1)

(x+ 2)

These both have convergent Taylor series for some nonzero interval about x0 = +1, so x0 = +1 is a regular
singular point.

All other points are ordinary points.
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Series Solutions around an Ordinary Point x0

If you want a series solution about an ordinary point x0, assume a solution exists which is of the form

y =
∞∑
n=0

an(x− x0)n, |x− x0| < ρ 6= 0.

We are guaranteed to find two solutions that form a fundamental set of solutions.

Procedure:

1. Differentiate and substitute into DE.

2. simplify the DE using the techniques for combining power series we discussed in 5.1, and determine the
recursion relations for the coefficients an.

3. Expand out the recursion relations to see if you can determine the pattern.

4. Use Mathematica to determine the underlying functions in the fundamental set of solutions.

• A truncated power series only applies in a local area about the center of expansion (x = 1 here).

• The idea that fundamental functions are defined in terms of differential equations is a powerful one.

• In this manner polynomials like the Hermite, Legendre, Laguerre, Airy functions, Bessel functions, and
others are obtained.
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Example of Process Find a series solution of y′′ + y = 0 about x0 = 1.

Since p(x) = 0 and q(x) = 1 are analytic at x0 = 1, the point x0 = 0 is an ordinary point.

The function p(x) and q(x) are already expressed as Taylor series about x0 = 1, if they weren’t we would need to
replace them by their respective Taylor series expansions.

Therefore, assume a solution of the form: y =
∞∑
n=0

an(x− 1)n, |x| < ρ.

Differentiate:

y =
∞∑
n=0

an(x− 1)n

y′ =
∞∑
n=0

nan(x− 1)n−1

y′′ =
∞∑
n=0

n(n− 1)an(x− 1)n−2

Substitute into the DE:
∞∑
n=0

n(n+ 1)an(x− 1)n−2 +
∞∑
n=0

an(x− 1)n = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n +
∞∑
n=0

an(x− 1)n = 0

∞∑
n=0

[(n+ 2)(n+ 1)an+2 + an] (x− 1)n = 0

Each coefficient must be zero for the series to be zero, and this gives us the recurrence relation:

(n+ 2)(n+ 1)an+2 + an = 0, n = 0, 1, 2, 3, . . .

The a0 and a1 are not determined by the recurrence relation, so they are arbitrary, and the recurrence relation
yields:

an+2 =
−an

(n+ 2)(n+ 1)
, n = 0, 1, 2, 3, ...

a0 = arbitrary, not equal to zero

a1 = arbitrary, not equal to zero

a2 = − a0
1 · 2

= −a0
2!

a3 = − a1
2 · 3

= −a1
3!

a4 = − a2
3 · 4

= +
a0
4!

a5 = − a3
4 · 5

= +
a1
5!

a6 = − a4
5 · 6

= −a0
6!

a7 = − a5
6 · 7

= −a1
7!
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The pattern is easy to find here, since the original DE is one we could solve without using series solutions (it was
constant coefficient). The pattern is different if we have even or odd powers of x (the even have an a0, the odd
a1), so we should write

y =
∞∑
n=0

an(x− 1)n

=
∞∑
k=0

a2k(x− 1)2k +
∞∑
k=0

a2k+1(x− 1)2k+1

a2k = (−1)k
1

(2k)!
a0 (find a pattern, write in closed form)

a2k+1 = (−1)k
1

(2k + 1)!
a1

y = a0

∞∑
k=0

(−1)k

(2k)!
(x− 1)2k + a1

∞∑
k=0

(−1)k

(2k + 1)!
(x− 1)2k+1

= a0 cos(x− 1) + a1 sin(x− 1) (identify the function the series represents)

The a0, a1 are the arbitrary constants of the problem (what we have been calling c1, c2 usually).

The fundamental set of solution is given by:

y1(x) =
∞∑
k=0

(−1)k

(2k)!
(x− 1)2k = cos(x− 1)

y2(x) =
∞∑
k=0

(−1)k

(2k + 1)!
(x− 1)2k+1 = sin(x− 1)

In this case we were able to

1. find a general closed from for the two solutions,

2. identify the closed form as the trig functions sine and cosine.

In general, neither of these things may be possible! Frequently, we can identify the pattern, but not what the
function is that the sum represents.

Since we identified the underlying function, we do not have to worry about where the series converges.


