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Section 5.3 Series Solution Near Ordinary Point

Example Find a series solution around x = x0 = 0 to the differential equation (1− x)y′′ + xy′ − y = 0.

The coefficients in the differential equation are:

P (x) = 1− x,
Q(x) = x,

R(x) = −1.

These are already in powers of (x− 0), so we do not need to do any Taylor series expansions of the coefficients.

Since p(x) =
x

1− x
and q(x) =

−1

1− x
are analytic at x0 = 0 (basically, the functions are not infinite at x0), x0 = 0

is an ordinary point.

Assume a solution is of the form

y =
∞∑
n=0

anx
n, |x| < ρ.

Differentiate:

y =
∞∑
n=0

anx
n,

y′ =
∞∑
n=1

nanx
n−1,

y′′ =
∞∑
n=2

n(n− 1)anx
n−2.

Substitute into the differential equation:

(1− x)
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n + x

∞∑
n=0

(n+ 1)an+1x
n −

∞∑
n=0

anx
n = 0

Step 1: Push the P,Q,R into the sums:

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n+1 +

∞∑
n=0

(n+ 1)an+1x
n+1 −

∞∑
n=0

anx
n = 0

Step 2: Get the same power of x in each term. Replace m = n+ 1 in the two middle sums, other sums let m = n:

∞∑
m=0

(m+ 2)(m+ 1)am+2x
m −

∞∑
m=1

(m+ 1)mam+1x
m +

∞∑
m=1

mamx
m −

∞∑
m=0

amx
m = 0

Step 3: Get all the summations starting at the same point. Generally, choose the highest and make all the
summations start there. In this case we take out the m = 0 terms of the first and last terms:

2 · 1 a2x0 +
∞∑

m=1

(m+ 2)(m+ 1)am+2x
m −

∞∑
m=1

(m+ 1)mam+1x
m +

∞∑
m=1

mamx
m − a0x0 −

∞∑
m=1

amx
m = 0
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Now collect all the terms together:

(2a2 − a0)x0 +
∞∑

m=1

[(m+ 2)(m+ 1)am+2 − (m+ 1)mam+1 +mam − am]xm = 0

We set the coefficients of x equal to zero (since the entire series equals zero). This is really equating powers of x,
so keep that in mind if you are equating two series!

2a2 − a0 = 0, n = 0,

(m+ 2)(m+ 1)am+2 − (m+ 1)mam+1 +mam − am = 0, m = 1, 2, 3, . . . .

Notice that if we take m = 0 in the second relation, we get 2a2 − a0 = 0, so we can combine these two relations.
This is not always going to happen! The recurrence relation is therefore:

(m+ 2)(m+ 1)am+2 − (m+ 1)mam+1 + (m− 1)am = 0, m = 0, 1, 2, 3, . . .

Now, use the recurrence relation to determine the coefficients an. n = 0 specifies a2 in terms of a1 and a0. Hence,
a0 and a1 are arbitrary. They represent the constants of integration.

am+2 =
(m+ 1)m am+1 − (m− 1)am

(m+ 2)(m+ 1)
, m = 0, 1, 2, 3 . . .

a0 = arbitrary

a1 = arbitrary

a2 =
a0
2!

a3 =
2a2
3 · 2

=
2

3 · 2
a0
2!

=
a0
3!

a4 =
3 · 2 a3 − a2

4 · 3
=

3 · 2a0
3!
− a0

2!

4 · 3
=
a0
4!

a5 =
4 · 3 a4 − 2 a3

5 · 4
=

4 · 3a0
4!
− 2a0

3!

5 · 4
=
a0
5!

In general, we have

am =
a0
m!
, m = 0, 2, 3, 4, . . .

Note that the m = 1 term is not included in the above. The solution to the differential equation is:

y =
∞∑
n=0

anx
n

=
∞∑

m=0

amx
m

= a0 + a1x+
∞∑

m=2

a0
m!
xm

= a0

[
1 +

∞∑
m=2

1

m!
xm

]
+ a1x

= a0y1(x) + a1y2(x)
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The constants of integration are a0, a1, which we previously called c1, c2. A fundamental set of solutions is {y1, y2},

y1 = 1 +
∞∑

m=2

1

m!
xm, y2 = x.

The solution y2 is obviously convergent for all x.

In this case we can identify the infinite series as part of the Taylor series expansion for ex, so we have

y1 = 1 +
∞∑

m=2

1

m!
xm = 1− 1− x+

∞∑
m=0

1

m!
xm = −x+ ex.

Since we were able to identify the underlying function the series represents, we do not need to worry about radius
of convergence of our series.

If we did need to consider radius of convergence of series, there is a helpful theorem.

Theorem 5.3.1 If x0 is an ordinary point of the differential equation P (x)y′′ + Q(x)y′ + R(x)y = 0, then the
general solution is

y =
∞∑
n=0

an(x− x0)n = a0y1 + a1y2,

where a0 and a1 are arbitrary, and the y1 and y2 are linearly independent series solutions that are analytic at x0.
Further, the radius of convergence for each of the series solutions y1 and y2 is at least as large as the minimum
of the radii of convergence of the series for p and q.

Example Determine the minimum radii of convergence for the series solutions about x0 = 0 and x0 = 1/2 for
the differential equation (1− x3)y′′ + 4xy′ + y = 0.

We do not have to find the series solutions to answer this question. Identify p(x) =
4x

1− x3
and q(x) =

1

1− x3
.

The complex poles of p and q are when 1 − x3 = 0, or x = 11/3 which are the third roots of unity. Therefore,
x = 1,−1/2 + i

√
3/2,−1/2− i

√
3/2. Both x0 = 0 and x0 = 1/2 are ordinary points, so Theorem 5.3.1 applies.

We have the following diagrams for x0 = 0 (left) and x0 = 1/2 (right) (red points are x0, blue points are the
complex poles of p and q):
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For x0 = 0: The distance to nearest complex pole is 1. Therefore, the minimum radius of convergence of the
series solution about x0 = 0 is ρ = 1.

For x0 = 1/2: The distance to nearest complex pole is 1/2. Therefore, the minimum radius of convergence of the
series solution about x0 = 1/2 is ρ = 1/2.


