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2401 Differential Equations Section Chapter 5.6 Series Solution

Here we will conclude our look at series solutions by looking at series solutions in general.

What we see here is verification of the form of the solutions we saw earlier, and although we should not try to use
these structure to solve the differential equations by hand, the relations we will find are well suited to computer
implementation.

We will need the series multiplication result:
∞∑
n=0

anx
n

∞∑
n=0

bnx
n =

∞∑
n=0

(
n∑

k=0

akbn−k

)
xn

We are considering the differential equation of the form y′′ + p(x)y′ + q(x)y = 0.

Series Solution about x0 = 0, an Ordinary Point: General Case

If the point x0 = 0 is an ordinary point, then the p and q are analytic, which means they have a Taylor series
about x0 = 0 with a nonzero radius of convergence. Therefore, we can write them as

p(x) =
∞∑
n=0

pnx
n, q(x) =

∞∑
n=0

qnx
n.

Assume:

y =
∞∑
n=0

anx
n,

y′ =
∞∑
n=0

(n+ 1)an+1x
n,

y′′ =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.

Substitute into the differential equation:

y′′ + p(x)y′ + q(x)y = 0
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

pnx
n

∞∑
n=0

(n+ 1)an+1x
n +

∞∑
n=0

qnx
n

∞∑
n=0

anx
n = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

(
n∑

k=0

pk(n− k + 1)an−k+1

)
xn +

∞∑
n=0

(
n∑

k=0

qkan−k

)
xn = 0

∞∑
n=0

(
(n+ 2)(n+ 1)an+2 +

n∑
k=0

pk(n− k + 1)an−k+1 +
n∑

k=0

qkan−k

)
xn = 0

For this to be zero for all values of x, each coefficient of x must be zero:

(n+ 2)(n+ 1)an+2 +
n∑

k=0

(
pk(n− k + 1)an−k+1 + qkan−k

)
= 0, n = 0, 1, 2, 3, . . . (1)
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Recursion Relations

We will always be able to solve Eq. (1) recursively, and get two solutions in terms of the two unspecified constants
a0 and a1. The solution will split up into two infinite series, one with a0 factors, the other with a1 factors. This
happens because the differential equation is linear.

Notice that in general, the coefficient an+2 depends on all the previous coefficients.

an+2 = − 1

(n+ 2)(n+ 1)

n∑
k=0

(
pk(n− k + 1)an−k+1 + qkan−k

)
, n = 0, 1, 2, 3, . . .

This can be implemented on a computer in the following manner:

a0 = c1

a1 = c2

an = − 1

n(n− 1)

n−2∑
k=0

(
pk(n− k − 1)an−k−1 + qkan−k−2

)
, n = 2, 3, . . .

Series Solution about x0 = 0, a Regular Singular Point: General Case

If the point x0 = 0 is a regular singular point, then xp(x) and x2q(x) are analytic, which means they have a
Taylor series about x0 = 0 with a nonzero radius of convergence. Therefore, we can write them as

xp(x) =
∞∑
n=0

pnx
n, x2q(x) =

∞∑
n=0

qnx
n.

Assume:

y =
∞∑
n=0

anx
n+r,

y′ =
∞∑
n=0

(n+ r)anx
n+r−1,

y′′ =
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2.
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Substitute into the differential equation:

y′′ + p(x)y′ + q(x)y = 0

x2y′′ + x (xp(x)) y′ + x2q(x)y = 0

x2
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2 + x

(
∞∑
n=0

pnx
n

)
∞∑
n=0

(n+ r)anx
n+r−1 +

(
∞∑
n=0

qnx
n

)
∞∑
n=0

anx
n+r = 0

��xr

(
∞∑
n=0

(n+ r)(n+ r − 1)anx
n +

(
∞∑
n=0

pnx
n

)
∞∑
n=0

(n+ r)anx
n +

(
∞∑
n=0

qnx
n

)
∞∑
n=0

anx
n

)
= 0

∞∑
n=0

(n+ r)(n+ r − 1)anx
n +

∞∑
n=0

(
n∑

k=0

pk(n− k + r)an−k

)
xn +

∞∑
n=0

(
n∑

k=0

qkan−k

)
xn = 0

∞∑
n=0

[
(n+ r)(n+ r − 1)an +

n∑
k=0

pk(n− k + r)an−k +
n∑

k=0

qkan−k

]
xn = 0

For this to be zero for all values of x, each coefficient of x must be zero:

(n+ r)(n+ r − 1)an +
n∑

k=0

(
pk(n− k + r)an−k + qkan−k

)
= 0, n = 0, 1, 2, 3, . . . (2)

Indicial and Recursion Relations

We need to get an indicial equation and recurrence relations from these; if we take the n = 0 part to be the
indicial equation:

F (r) = r(r − 1) + rp0 + q0 = 0

with the condition that a0 6= 0, which is the arbitrary constant in the solution.

Notice the indicial equation is the indicial equation for the associated Euler equation, where the expansions for
xp(x) ∼ p0 and x2q(x) ∼ q0 are replaced by the constant term. The roots of the indicial equation are r1 and r2.

Then the recurrence relations are:

(n+ r)(n+ r − 1)an +
n∑

k=0

(pk(n− k + r)an−k + qkan−k) = 0, n = 1, 2, 3, . . .

We can’t quite work with this form–notice that k = 0 in the sum gives us an an, which is what we want to solve
for. Therefore, we have to take the k = 0 part out of the sum, and then solve for an, which gives us

an = − 1

(n+ r)(n+ r − 1) + p0(n+ r) + q0

n∑
k=1

(
pk(n− k + r) + qk

)
an−k, n = 1, 2, 3, . . .

= − 1

F (n+ r)

n∑
k=1

(
pk(n− k + r) + qk

)
an−k, n = 1, 2, 3, . . .

Notice that in general, the coefficient an depends on all the previous coefficients.
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If r1,2 are complex, we will have no problems with division by zero, and we will obtain two complex valued
solutions for which r1,2 = λ± µi. We can get real valued solutions by taking the real and imaginary parts of the
solution as we have done before.

Real Roots: Assume r1 ≥ r2. We can always get one solution to the differential equation using the larger of the
two roots of the indicial equation, r1.

For the root r1, the recurrence relations are well defined, and everything works well.

a0 = 1

an = − 1

F (n+ r1)

n∑
k=1

(
pk(n− k + r1) + qk

)
an−k, n = 1, 2, 3, . . .

We would proceed to find a second solution using the root r2, using the recurrence relations

a0 = 1

an = − 1

F (n+ r2)

n∑
k=1

(
pk(n− k + r2) + qk

)
an−k, n = 1, 2, 3, . . .

The only difficulty could be if F (n+ r2) = 0, which happens if n+ r2 = r1, since r1 and r2 are the only solutions
to F (r) = 0.

Therefore, if r1 − r2 = n, we get division by zero and we can’t find a second solution from the recursion relation.

If the two roots are real and do not differ by an integer, a second solution can be found using the recurrence
relation.

If the two roots are real and differ by an integer, a second solution can be found using reduction of order. The
formula we worked out earlier for the second solution was:

y2(x) = y1(x)

∫
exp(−

∫
p(x)dx)

y21(x)
dx.

Note that this involves inverting and squaring a power series!

There are other ways of getting the second solution–see the text.

The second solution may involve a logarithm for real roots that differ by an integer, and it is not unusual for the
second solution to diverge at x = 0.

Real Repeated Roots: You can also use reduction of order to get a second solution for repeated roots.

Convergence: Consider the series alone, with out the xr1,2 part. As before, these series will converge at least with
the radius of convergence of the minimum of the xp(x) and x2q(x) radius of convergence. These functions are
analytic at x0 = 0. The singular behaviour, if any, is entirely contained in the xr1,2 factor!

If you can determine the underlying function the series represent, you need not worry about the radius of conver-
gence of the series since you have the function and can use its domain to guide you.

To go to negative x, we end up with the same equations, so we can replace x→ |x| and consider all x 6= 0.


