Math 2401: Roots of Unity

Here we will outline a procedure to find the roots of unity. The calculations will get progressively more complicated. The basic idea is to use the relation $1=e^{2 i \pi k}$ where k is an integer. The method can be expanded to other numbers using the relation $\mu+i \lambda=r e^{i(\theta+2 \pi k)}$, where:

First root of unity:

$$
1^{1 / 1}=1
$$

Second roots of unity:

$$
\begin{aligned}
1^{1 / 2} & =\left(e^{i(2 \pi k)}\right)^{1 / 2}, \quad k=0,1 \\
& =e^{i(\pi k)}, \quad k=0,1 \\
& =e^{0}, \text { or } e^{i \pi} \\
& =1, \text { or } \cos \pi+i \sin \pi \\
& =1, \text { or }-1
\end{aligned}
$$

Third roots of unity:

$$
\begin{aligned}
1^{1 / 3} & =\left(e^{i(2 \pi k)}\right)^{1 / 3}, \quad k=0,1,2 \\
& =e^{i(2 \pi k) / 3}, k=0,1,2 \\
& =e^{0}, \text { or } e^{i 2 \pi / 3}, \text { or } e^{i 4 \pi / 3} \\
& =1, \text { or } \cos 2 \pi / 3+i \sin 2 \pi / 3, \text { or } \cos 4 \pi / 3+i \sin 4 \pi / 3 \\
& =1, \text { or }-\frac{1}{2}+\frac{\sqrt{3}}{2} i, \text { or }-\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{aligned}
$$

Fourth roots of unity:

$$
\begin{aligned}
1^{1 / 4} & =\left(e^{i(2 \pi k)}\right)^{1 / 4}, k=0,1,2,3 \\
& =e^{i(\pi k) / 2}, k=0,1,2,3 \\
& =e^{0}, \text { or } e^{i \pi / 2}, \text { or } e^{i \pi}, \text { or } e^{i 3 \pi / 2} \\
& =1, \text { or } \cos \pi / 2+i \sin \pi / 2, \text { or } \cos \pi+i \sin \pi, \text { or } \cos 3 \pi / 2+i \sin 3 \pi / 2 \\
& =1, \text { or } i, \text { or }-1, \text { or }-i
\end{aligned}
$$

Fifth roots of unity:

$$
\begin{aligned}
1^{1 / 5}= & \left(e^{i(2 \pi k)}\right)^{1 / 5}, \quad k=0,1,2,3,4 \\
= & e^{i(2 \pi k) / 5}, k=0,1,2,3,4 \\
= & e^{0}, \text { or } e^{i 2 \pi / 5}, \text { or } e^{i 4 \pi / 5}, \text { or } e^{i 6 \pi / 5}, \text { or } e^{i 8 \pi / 5} \\
= & 1, \text { or } \cos 2 \pi / 5+i \sin 2 \pi / 5, \text { or } \cos 4 \pi / 5+i \sin 4 \pi / 5 \\
& \quad \text { or } \cos 6 \pi / 5+i \sin 6 \pi / 5, \text { or } \cos 8 \pi / 5+i \sin 8 \pi / 5 \\
= & 1, \text { or } \frac{1}{4}(-1+\sqrt{5})+\frac{i}{2} \sqrt{\frac{1}{2}(5+\sqrt{5})}, \text { or } \frac{1}{4}(-1-\sqrt{5})+\frac{i}{2} \sqrt{\frac{1}{2}(5-\sqrt{5})}, \\
& \quad \text { or } \frac{1}{4}(-1-\sqrt{5})-\frac{i}{2} \sqrt{\frac{1}{2}(5-\sqrt{5})}, \text { or } \frac{1}{4}(-1+\sqrt{5})-\frac{i}{2} \sqrt{\frac{1}{2}(5+\sqrt{5})} \\
= & 1, \text { or } 0.309+0.951 i, \text { or }-0.809+0.588 i, \text { or }-0.809-0.588 i, \text { or } 0.309-0.951 i
\end{aligned}
$$

Note that in all cases the roots are equally spaced around the unit circle.

Application to Differential Equations

Now, we can use this information to solve the differential equation

$$
y^{(5)}-y=0
$$

If we assume the solution is $y=e^{r t}$, and substitute into the differential equation we arrive at the characteristic equation

$$
\begin{aligned}
y^{(5)}-y & =0 \\
r^{5} e^{r t}-e^{r t} & =0 \\
r^{5}-1 & =0 \quad \text { characteristic equation } \\
r & =1^{1 / 5}
\end{aligned}
$$

We solved this above, and saw that one root is real, and the other four roots are complex conjugates. We have

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\cos 2 \pi / 5+i \sin 2 \pi / 5=\frac{1}{4}(-1+\sqrt{5})+\frac{i}{2} \sqrt{\frac{1}{2}(5+\sqrt{5})} \\
& r_{3}=\cos 4 \pi / 5+i \sin 4 \pi / 5=\frac{1}{4}(-1-\sqrt{5})+\frac{i}{2} \sqrt{\frac{1}{2}(5-\sqrt{5})} \\
& r_{4}=\cos 6 \pi / 5+i \sin 6 \pi / 5=\frac{1}{4}(-1-\sqrt{5})-\frac{i}{2} \sqrt{\frac{1}{2}(5-\sqrt{5})} \\
& r_{5}=\cos 8 \pi / 5+i \sin 8 \pi / 5=\frac{1}{4}(-1+\sqrt{5})-\frac{i}{2} \sqrt{\frac{1}{2}(5-\sqrt{5})}
\end{aligned}
$$

The complex roots lead to complex valued solutions. These can be replaced by real valued solutions.
The complex conjugate pair r_{2} and r_{5} have $\lambda=\frac{1}{4}(-1+\sqrt{5}), \mu=\frac{1}{2} \sqrt{\frac{1}{2}(5+\sqrt{5})}$.
The complex conjugate pair r_{3} and r_{4} have $\lambda=\frac{1}{4}(-1-\sqrt{5}), \mu=\frac{1}{2} \sqrt{\frac{1}{2}(5-\sqrt{5})}$.
The general solution is therefore (using $2 \pi / 5$ and $4 \pi / 5$ for notational convenience):

$$
\begin{aligned}
y(t)= & c_{1} e^{t}+e^{t(\cos 2 \pi / 5)}\left(c_{2} \cos (t(\sin 2 \pi / 5))+c_{3} \sin (t(\sin 2 \pi / 5))\right) \\
& +e^{t(\cos 4 \pi / 5)}\left(c_{4} \cos (t(\sin 4 \pi / 5))+c_{5} \sin (t(\sin 4 \pi / 5))\right)
\end{aligned}
$$

or

$$
y(t)=c_{1} e^{t}+e^{0.309 t}\left(c_{2} \cos 0.951 t+c_{3} \sin 0.951 t\right)+e^{-0.809 t}\left(c_{4} \cos 0.588 t+c_{5} \sin 0.588 t\right)
$$

