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General Concepts: First Order Equations

• What is a differential equation and the terminology (order, linear, nonlinear, ordinary, partial, systems, general solution,
etc).

• Direction fields (what they are, how to construct them for simple cases, what can we learn from them, etc)

• Infinite families of solutions

• Initial value Problems

• Equilibrium solutions, stable, unstable, semistable

Differences between Linear & Nonlinear Equations

• A general solution exists for first order linear when the coefficients are continuous (uniqueness and existence theorems)

A general solution is a family of curves, but a family of curves may not be a general solution.

• There is an explicit solution y for the first order linear equation

• The points of discontinuity are evident without solving the equation for a linear equation

• None of the above are true for nonlinear equations

• intervals on which solutions will exist for first order linear equations (existence and uniqueness theorem)

Techniques

• Separable equations

• Integrating factor technique µ(y) for linear first order equations

• Exact equations

• Mathematical Modeling (mixing problems)

• Autonomous equations dy
dt = f(y) (Logistic, Critical Threshold), how to construct a graphical representation from the

rate function (the details), a solution could become infinite at finite time, how to solve

• Basic integrals, simple parts, simple partial fractions (integration formulas for difficult integrals may be provided)

• Picard’s iteration method
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Example: Separable

General Form: G(x)dx = H(y)dy or
dy

dx
=
G(x)
H(y)

.

Solve the initial value problem:
dy

dx
=

y

1 + x
, y(1) = 1.

• Note that this can be written as:
dy

dx
=

(
1
y

)
(

1
1+x

) or
1

1 + x
dx =

1
y
dy.

• So it is separable. HINT: Separable equations often require the use of partial fractions!

• Integrate directly to get the solution:

∫
1

1 + x
dx =

∫
1
y
dy

ln |1 + x| = ln |y|+ C

1 + x = yeC

y = C1(1 + x)

• Apply the initial condition to determine the constant C1:

y(1) = 1 −→ 1 = C1(1 + 1) −→ C1 =
1
2

• So the solution to the initial value problem is: y =
1
2
(x+ 1).

Example: First Order Linear Equation Variable Coefficients: Integrating Factor (you must
show these details in your solution)

General Form:
dy

dt
+ p(t)y = g(t).

Solve
dy

dx
= 2y + x2 + 5.

• Rewrite in General Form:

dy

dx
− 2y = x2 + 5

• Identify that this is first order linear with:

p(t) = −2, g(t) = x2 + 5
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• Use the integrating factor technique; multiply by µ(x):

µ(x)
dy

dx
− 2µ(x)y = µ(x)(x2 + 5)

• Compare the Left Hand Side of above with the product rule expansion of the derivative:

d

dx
[µ(x)y] = µ(x)

dy

dx
+
dµ(x)
dx

y

• The comparison gives us the differential equation for the integrating factor:

dµ(x)
dx

= −2µ(x)

• Solve for the integrating factor (constant of integration does not need to be kept at this point, it will cancel out later):

dµ

µ
= −2dx∫

dµ

µ
=

∫
−2dx

ln |µ| = −2x
µ = e−2x

• Substitute back:

µ(x)
dy

dx
− 2µ(x)y = µ(x)(x2 + 5)

e−2x dy

dx
− 2e−2xy = e−2x(x2 + 5)

d

dx
[e−2xy] = e−2x(x2 + 5)

d[e−2xy] = e−2x(x2 + 5)dx∫
d[e−2xy] =

∫
e−2x(x2 + 5)dx integral provided

e−2xy = e−2x(
−11
4

− x

2
− x2

2
) + C

y = (
−11
4

− x

2
− x2

2
) + Ce2x

is the solution of the differential equation.

Example: Exact: nonlinear first order equations

General Form: M(x, y) +N(x, y)
dy

dx
= 0.
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Solve (e2y − y cos(xy))dx+ (2xe2y − x cos(xy) + 2y)dy = 0.

• Identify M(x, y) and N(x, y):

M(x, y) = e2y − y cos(xy) N(x, y) = 2xe2y − x cos(xy) + 2y

• Determine the partial derivatives of M and N (“My I love exact DEs!”):

My(x, y) = 2e2y − cos(xy) + xy sin(xy) = Nx(e, y)

• The above means that this equation is exact. Therefore, there exists a function ψ that satisfies:

∂ψ

∂x
= M(x, y)

∂ψ

∂y
= N(x, y)

• Pick the first of these equations, and integrate to find an expression for ψ:

ψ(x, y) =
∫
Mdx+ h(y)

=
∫ (

e2y − y cos(xy)
)
dx+ h(y)

= e2yx− sin(xy) + h(y)

• The solution to the DE is given by ψ(x, y) = C, and all that remains to do is determine h(y). We now differentiate the
above with respect to y:

∂ψ

∂y
= 2xe2y − x cos(xy) +

dh(y)
dy

• Now compare with

∂ψ

∂y
= N(x, y) = 2xe2y − x cos(xy) + 2y

to get a differential equation for h(y):

dh(y)
dy

= +2y

• Solve the DE for h(y) (NOTE: no constant of integration here–it would get folded into the constant C later):

dh = 2ydy∫
dh =

∫
2ydy

h(y) = y2

• Substitute back to obtain the implicit solution to the differential equation as:

e2yx− sin(xy) + y2 = C
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General Concepts: Second Order Equations

Homogeneous Equations ay′′ + by′ + cy = 0

• Assume a solution looks like y = ert

• Sub into the DE to get characteristic equation. The roots of the characteristic equation ar2 + br + c = 0 yields the
general solutions:

– two real roots r1, r2

y(t) = c1e
r1t + c2e

r2t

– complex conjugate roots r = λ± µi

y(t) = c1e
λt cosµt+ c2e

λt sinµt

– Know how the real valued solutions were found from the complex valued

– one real root r of multiplicity 2

y(t) = c1e
rt + c2te

rt

– Know how the second solution was found

– Know how the solutions differ in behaviour (oscillatory, decay, growth)

• Fundamental theory

– Superposition principle (when can we add solutions to get another solution?)

– Wronskian W (y1, y2)(t) =
∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣
– linear independence: Two functions f and g are linearly independent on an interval I if there exist two constants
k1, k2, not both zero, such that:

k1f(t) + k2g(t) = 0

for all t in I.

– Abel’s Theorem: W (y1, y2)(t) = c exp
(
−

∫
p(t)dt

)
– fundamental set of solutions

– relationship between linear independence, fundamental sets of solutions, and the Wronskian:

1. The functions y1 and y2 are a fundamental set of solutions on I
2. The functions y1 and y2 are linearly independent on I
3. W (y1, y2)(t0) 6= 0 for some t0 in I
4. W (y1, y2)(t) 6= 0 for all t in I

• Reduction of Order to find a second solution when you already have one solution y1(t) (let y = v(t)y1(t) and
substitute to find second solution)
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Nonhomogeneous Equations ay′′ + by′ + cy = g(t)

• Solution is y(t) = yc(t) + yp(t) where yc(t) is the complementary solution (solution of the associated homogeneous
equation) and yp(t) is any particular solution (solution of the nonhomogeneous equation).

• Two methods to determine yp(t)

– Undetermined coefficients, for a nonhomogeneous term of the form exponential, cosine, sine, polynomial.
If any part of your assumed solution appears in the complementary solution, you will not be able to determine
the coefficients. This is because that part will satisfy the homogeneous equation and reduce to zero. If this
happens, multiply your entire assumed solution by powers of t until your assumed solution does not contain
part of the complementary solution.
Summary of how to use undetermined coefficients:

∗ If g(t) = eβt, assume particular solution is proportional to eβt.
∗ If g(t) = sinβt, cosβt, assume the particular solution is proportional to A cosβt+B sinβt.
∗ If g(t) is a polynomial, than assume the particular solution is a polynomial of like degree.
∗ If g(t) is a product of the above forms, assume the particular solution is the corresponding product. Multiply

out and define new constant for each different function of t.
∗ If g(t) has more than one term, split the DE up and solve for a particular solution for each term individually.

– Variation of parameters; know how to work the method through from the beginning.
Assume yp(t) = u1(t)y1(t) + u2(t)y2(t).
Differentiate to substitute into the differential equation, where you assume u′1(t)y1(t) + u′2(t)y2(t) = 0.
The differential equation provides the second equation, and you will have a system of 2 equations in the 2
unknowns u′1(t) and u′2(t). Solve using Cramer’s rule and you will find

u′1(t) =

∣∣∣∣ 0 y2(t)
g(t) y′2(t)

∣∣∣∣
W (y1, y2)(t)

, u′2(t) =

∣∣∣∣ y1(t) 0
y′1(t) g(t)

∣∣∣∣
W (y1, y2)(t)

Integrate to determine u1(t) and u2(t).

• mechanical and electrical vibrations

– general behaviour of the solutions (growth, decay, neither)

– Interpret a given differential equation in terms of a mechanical system

∗ importance of obtaining a model that has a unique solution, since the physical model has a unique solution
(this leads us to avoid nonlinear models if possible)

– Unforced Systems

∗ undamped free vibrations (harmonic oscillator)
· equation is mu′′ + ku = 0.
· derive the solution u(t) = A cosω0t+B sinω0t, ω2

0 = k/m.
∗ damped free vibrations

· equation is mu′′ + γu′ + ku = 0.
· derive the solution, and understand (don’t memorize, work from roots of characteristic equation):
· critical damping γ = 2

√
km (no oscillations) (real root of multiplicity 2)

· overdamping γ > 2
√
km (no oscillations) (two distinct real valued roots)

· underdamping γ < 2
√
km (oscillations, not periodic) (complex roots)
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General Concepts: nth order linear equations constant coefficients

Homogeneous equations
n∑

i=0

ciy
(i) = 0

• assume solution looks like y = ert

• characteristic equation has roots ri, i = 1, 2, 3, . . . , n.

– distinct roots: y1 = er1t, y2 = er2t, etc.
– if repeated roots r1 = r2 = r3; y1 = er1t, y2 = ter1t, y3 = t2er1t, etc.
– if complex roots r1,2 = λ± µi; y1 = eλt cosµt, y2 = eλt sinµt

Nonhomogeneous equations
n∑

i=0

ciy
(i) = g(t)

• solve associated homogeneous equation first.

• undetermined coefficients, assume solution looks like g(t): Y = At+B, Y = eωt, Y = A cosωt+B sinωt.

• choice for particular solution should not contain any part of the homogeneous solution

• variation of parameters

Example Solve y′′′ − 4y′ = t.

Solve homogeneous equation first, y′′′ − 4y′ = 0.

Assume y = ert. Substitute into differential equation to obtain characteristic equation r3 − 4r = r(r − 2)(r + 2) = 0.

In this case, y1 = 1, y2 = e−2t, y3 = e2t. Complementary solution is yc(t) = c1 + c2e
−2t + c3e

2t.

To get particular solution, use undetermined coefficients.

Y = (At+B) overlap with yc

= (At+B)t will work
Y = At2 +Bt

Y ′ = 2At+B

Y ′′ = 2A
Y ′′′ = 0

y′′′ − 4y′ = t

0− 4 (2At+B) = t

−8At− 4B = t

So A = −1/8 and B = 0.

The general solution is y(t) = c1 + c2e
−2t + c3e

2t − t2/8.

If initial conditions are given, they could be used at this point to determine the values of c1, c2 and c3.


