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Questions

Example (2.8.1) Transform the initial value problem y′ = t2 + y2, y(1) = 2 into an equivalent problem with the initial
point at the origin.

Example (2.8.7) For the initial value problem y′ = ty + 1, y(0) = 0, using Picard’s method determine φn(t) and then
plot φn(t) for n = 1, 2, 3, 4.

Example (2.8.14) Consider the sequence φn(x) = 2nxe−nx
2

, 0 ≤ x ≤ 1.

(a) Show that limn→∞ φn(x) = 0 for 0 ≤ x ≤ 1, and hence

∫ 1

0

lim
n→∞

φn(x) dx = 0.

(b) Show that

∫ 1

0

2nxe−nx
2

dx = 1− e−n, and hence lim
n→∞

∫ 1

0

φn(x) dx = 1.

Solutions

Example (2.8.1) Transform the initial value problem y′ = t2 + y2, y(1) = 2 into an equivalent problem with the initial
point at the origin.

The transformation is driven by the initial condition. Define new coordinates:

ỹ(t̃) = y(t)− 2, t̃ = t− 1.

The initial conditions for the new coordinates become:

if t = 1, then t̃ = 1− 1 = 0.

ỹ(t̃ = 0) = ỹ(t = 1) = y(1)− 2 = 2− 2 = 0,

Start with the new equation:

ỹ(t̃) = y(t)− 2

y(t) = ỹ(t̃) + 2

d

dt
[y(t)] =

d

dt
[ỹ(t̃) + 2]

dy

dt
=

d

dt̃
ỹ(t̃) · dt̃

dt

=
dỹ

dt̃
· (1)

=
dỹ

dt̃

The initial value problem therefore becomes:

dỹ

dt̃
= (t̃+ 1)2 + (ỹ + 2)2, ỹ(0) = 0.

Example (2.8.7) For the initial value problem y′ = ty + 1, y(0) = 0, using Picard’s method determine φn(t) and then
plot φn(t) for n = 1, 2, 3, 4.

Picard’s method provides approximate solutions to the initial value problem

y′ = f(t, y), y(0) = 0,
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by calculating the sequence of functions

φ0(t) = 0

φn+1(t) =

∫ t

0

f(s, φn(s)) ds, n = 0, 1, 2, 3, 4, . . .

For this problem, f(t, y) = ty + 1 and we find:

φ0(t) = 0

φ1(t) =

∫ t

0

f(s, φ0(s)) ds =

∫ t

0

f(s, 0) ds =

∫ t

0

(s(0) + 1) ds = t

φ2(t) =

∫ t

0

f(s, φ1(s)) ds =

∫ t

0

f(s, s) ds =

∫ t

0

(s(s) + 1) ds =
t3

3
+ t

φ3(t) =

∫ t

0

f(s, φ2(s)) ds =

∫ t

0

f(s,
s3

3
+ s) ds =

∫ t

0

(s(
s3

3
+ s) + 1) ds =

t5

3 · 5
+
t3

3
+ t

φ4(t) =

∫ t

0

f(s, φ3(s)) ds =

∫ t

0

f(s,
s5

3 · 5
+
s3

3
+ s) ds =

∫ t

0

(s(
s5

3 · 5
+
s3

3
+ s) + 1) ds =

t7

3 · 5 · 7
+

t5

3 · 5
+
t3

3
+ t

From this, we can guess the pattern. It looks like we have

φn(t) =

n∑
i=1

t2i−1

1 · 3 · 5 · · · (2i− 1)
.

The plots are in the Mathematica file.

Example (2.8.14) Consider the sequence φn(x) = 2nxe−nx
2

, 0 ≤ x ≤ 1.

(a) Show that limn→∞ φn(x) = 0 for 0 ≤ x ≤ 1, and hence

∫ 1

0

lim
n→∞

φn(x) dx = 0.

(b) Show that

∫ 1

0

2nxe−nx
2

dx = 1− e−n, and hence lim
n→∞

∫ 1

0

φn(x) dx = 1.

In this example, lim
n→∞

∫ 1

0

φn(x) dx 6=
∫ 1

0

lim
n→∞

φn(x) dx even though limn→∞ φn(x) = 0 exists and is continuous.

(a)

lim
n→∞

φn(x) = lim
n→∞

2nxe−nx
2

= 2x lim
n→∞

n

enx2 −→
∞
∞

use l’Hospital’s rule

= 2x lim
n→∞

d
dn [n]

d
dn [enx2 ]

= 2x lim
n→∞

1

x2enx2

=
2

x
lim

n→∞

1

enx2 = 0 if x 6= 0

If x = 0, we have φn(0) = 2n(0)e−0 = 0.

Therefore, limn→∞ φn(x) = 0 for 0 ≤ x ≤ 1.

(b) ∫ 1

0

2nxe−nx
2

dx = −
∫ −n
0

eu du Substitution:u = −nx2; du = −2nx dx.When x = 1, u = −n;x = 0, u = 0.

= eu|0−n = 1− e−n
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Therefore, limn→∞

∫ 1

0

2nxe−nx
2

dx = lim
n→∞

(1− e−n) = 1.


