Differential Equations Practice: 2nd Order Linear: Application: Vibrations Page 1

Questions

Example (3.7.1) Determine wyg, R, and d so u = 3cos 2t + 4sin 2t = R cos(wot — 9).

Example (3.7.6) A mass of 100g stretches a spring 5cm. If the mass is set in motion from its equilibrium position with a
downward velocity of 10 cm/sec, and if there is no damping, determine the position of the mass at any time ¢. When does
the mass first return to its equilibrium position?

Example (3.7.11) A spring is stretched 10cm by a force of 3N. A mass of 2kg is hung from the spring and is also attached
to a viscous damper that exerts a force of 3N when the velocity of the mass is 5m/s. If the mass is pulled down 5cm below
its equilibrium position and given an initial downward velocity of 10 cm/s, determine its position at any time ¢. Find the
quasi frequency p and the ratio of p to the natural frequency of the corresponding undamped motion.

Solutions

Example (3.7.1) Determine wq, R, and ¢ so u = 3 cos 2t 4+ 4sin 2t = R cos(wot — 9).

Let’s work this through from first principles, rather than just using formulas.

u = Rcos(wot — 9)
Rcoswytcosd + Rsinwptsind  (basic trig identity for cosine of a difference)
3cos2t + 4sin 2t

Comparing, we have

Wo
Rcosé = 3
Rsind = 4

A bit of algebra leads to
R?cos? 8+ R?sin?6 = R?=32+42=25 — R =5,
Rsiné 4

B = tand = 3 § = arctan(4/3).

Therefore, u = 3 cos 2t + 4sin 2t = 5 cos(2t — arctan(4/3)).

Example (3.7.6) A mass of 100g stretches a spring 5cm. If the mass is set in motion from its equilibrium position with a
downward velocity of 10 cm/sec, and if there is no damping, determine the position of the mass at any time ¢. When does
the mass first return to its equilibrium position?

We can use the equation of motion which was derived in class:
mu' (t) + yu'(t) + ku(t) = F(t).

where m is the mass, 7 is the damping constant, k is the spring constant, F(t) is the driving force, and wu(t) is the
displacement.

No damping means v = 0. No external force means F(t) = 0. The mass is m = 1000g. The spring constant is
k = mg/L = 1000g x 980cm/s”/5cm = 19600g/s°. Let’s solve the differential equation, which is

mu' (t) + ku(t) = 0.

Since this is a constant coefficient differential equation, we can assume a solution looks like u = e"t. Then
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Substitute into the differential equation:

mu’(t) + ku(t) = 0
(mr? +k)e™ = 0

k

r? = —=

m

The mass and spring constant are both positive numbers, so r will be complex valued, r = ++/k/m i. The roots of
the characteristic equation are r; = ++/k/m i and ro = —+\/k/m i, complex conjugates with A = 0 and pu = /k/m.
A fundamental set of solutions to the associated homogeneous equation is u;(t) = e cosut = cos+/k/mt and us(t) =
e M sin ut = sin \/k/mt. The solution to the differential equation, with ¢ in seconds and u in cm, is

u(t) Z ciui(t) = c1 cos\/ k/mit + casin/k/mt = ¢y cos 14¢ + ¢o sin 14¢,

i=1

since \/k/m = 14s~ 1.

The initial conditions for this case are u(0) = 0 and «'(0) = 10 cm/s.

u(t) = ¢1cosldt + cosinldt
uw'(t) = —ldep sin 14t + 14eg cos 14t
u(0)=0 = ¢
W0)=10 = lde

Therefore, ¢; =0 and ¢3 = 5/7.
The solution to the system is u(t) = 5/7 sin 14¢.

The first return to equilibrium is when w(0) = 5/7sin14¢ = 0, or sin 14t = 0. The mass is at equilibrium for 14t = 7n,
n=01,23,...

t = 0: equilibrium position.
t = m/14: equilibrium position, velocity opposite sign of initial velocity.
t = w/7: equilibrium position, velocity same sign as initial velocity.

Example (3.7.11) A spring is stretched 10cm by a force of 3N. A mass of 2kg is hung from the spring and is also attached
to a viscous damper that exerts a force of 3N when the velocity of the mass is 5m/s. If the mass is pulled down 5cm below
its equilibrium position and given an initial downward velocity of 10 cm/s, determine its position at any time ¢. Find the
quasi frequency p and the ratio of p to the natural frequency of the corresponding undamped motion.

We can use the equation of motion which was derived in class:
mu' (t) + yu'(t) + ku(t) = F(t).

where m is the mass, v is the damping constant, k is the spring constant, F(¢) is the driving force, and wu(t) is the
displacement.

No external force means F(t) = 0. The mass is m = 2kg.

The spring constant is k = mg/L = 3N/0.1m = 30kg/s".

Viscous damping means Fy = —vyu'(t), or —3N = —v5m/s, which yields v = 3/5 kg/s.
The initial conditions are u(0) = 0.05m and «’(0) = 0.1m/s.

The initial value problem which models this situation is

1 1

2u//(t) + gu/(t) + 30u(t) = O,U(O) — 270,’&,(0) _ TO
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Let’s solve the differential equation, where ¢ is in seconds and u in meters, which is
1" 3 !/
2u(t) + FU (t) + 30u(t) = 0.
Since this is a constant coefficient differential equation, we can assume a solution looks like u = e"¢. Then
rt / rt " 2 rt

u=e"’, u =re’, u =re’.

Substitute into the differential equation:

3
2u (t) + gu’(t) +30u(t) = 0
(2r% +3r/5+30)™ = 0
2r2 +3r/5+30 = 0

The roots are complex, r = —3/20 £+ v/5991/20 i.

The solution to the differential equation, with ¢ in seconds and u in cm, is
2
u(t) > ciui(t) = cre™ /20 cos v/5991t/20 + cpe /20 sin v/5991¢/20.
i=1

Let’s, for a change, use Mathematica to solve for the constants using the initial conditions (it would be tedious to write
out by hand). The Mathematica file contains the details. We find ¢; = 1/20 and c2 = 43/(20+/5991).

The solution to the initial value problem is

1 1t 4 T
u(t) = —e 320 cos V5991, N 3 -st/20 V5991 .
20 201/5991 20

20
To get the quasi-frequency, we need to identify the wy. Referring to the results from Problem 3.8.1, we can easily identify
wo = Y29 The quasi-frequency is therefore

20 -
9 N\ 1/2 9 N\ 1/2
3/5 V5991 1997./3/5
p=[(1--2 wo= (1 B/ - /5. 3.86717rad/s.
4km 4(30)(2) 20 400
The ratio of the quasi-frequency to the natural frequency is
i 39T 6.99925.

wo 4000




