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Questions

Example (5.4.1) Determine the solution to the differential equation x2y′′+ 4xy′+ 2y = 0 that is valid in any interval not
containing the singular point.

Example (5.4.2) Determine the solution to the differential equation (x+ 1)2y′′+ 3(x+ 1)y′+
3

4
y = 0 that is valid in any

interval not containing the singular point.

Example (5.4.9) Determine the solution to the differential equation x2y′′− 5xy′+ 9y = 0 that is valid in any interval not
containing the singular point.

Example (5.4.17) Find all the singular points of the differential equation xy′′+(1−x)y′+xy = 0, and determine whether
each one is regular or irregular.

Example (5.4.20) Find all the singular points of the differential equation x2(1 − x2)y′′ +
2

x
y′ + 4y = 0, and determine

whether each one is regular or irregular.

Example (5.4.21) Find all the singular points of the differential equation (1 − x2)2y′′ + x(1 − x)y′ + (1 + x)y = 0, and
determine whether each one is regular or irregular.

Example (5.4.41) For the differential equation 2xy′′ + 3y′ + xy = 0, show that x = 0 is a regular singular point. Show
that there is only one nonzero solution of the form y =

∑∞
n=0 anx

n. In general, for regular singular points x0 there may
be no solutions of the form

∑∞
n=0 an(x− x0)n.

Solutions

Example (5.4.1) Determine the solution to the differential equation x2y′′+ 4xy′+ 2y = 0 that is valid in any interval not
containing the singular point.

The is an Euler equation (since the power of x in the coefficient is the same as the derivative), and the singular point is
x = 0.

Assume a solution looks like y = xr.

Differentiate, and substitute into the differential equation:

y = xr, y′ = rxr−1, y′′ = r(r − 1)xr−2

x2y′′ + 4xy′ + 2y = 0

r(r − 1)xr + 4rxr + 2xr = 0

r(r − 1) + 4r + 2 = 0

This is the indicial equation. Solving, we find (r + 2)(r + 1) = 0, so the roots are r = −2 and r = −1.

The general solution is therefore y(x) = c1x
−1 + c2x

−2, which is valid for x > 0. This is also the solution if x < 0, so the

general solution is y(x) =
c1
x

+
c2
x2

, x 6= 0.

Example (5.4.2) Determine the solution to the differential equation (x+ 1)2y′′+ 3(x+ 1)y′+
3

4
y = 0 that is valid in any

interval not containing the singular point.

The is an Euler equation (since the power of x + 1 in the coefficient is the same as the derivative), and the singular point
is x = −1.

Assume a solution looks like y = (x + 1)r.
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Differentiate, and substitute into the differential equation:

y = (x + 1)r, y′ = r(x + 1)r−1, y′′ = r(r − 1)(x + 1)r−2

(x + 1)2y′′ + 3(x + 1)y′ +
3

4
y = 0

r(r − 1)(x + 1)r + 3r(x + 1)r +
3

4
(x + 1)r = 0

r(r − 1) + 3r +
3

4
= 0

This is the indicial equation. Solving, we find (r + 3/2)(r + 1/2) = 0, so the roots are r = −3/2 and r = −1/2.

The general solution is therefore y(x) = c1(x + 1)−3/2 + c2(x + 1)−1/2, which is valid for x > 1. For x < 1, the solution is
y(x) = c1|x + 1|−3/2 + c2|x + 1|−1/2. For x 6= 1, the solution is y(x) = c1|x + 1|−3/2 + c2|x + 1|−1/2.

Example (5.4.9) Determine the solution to the differential equation x2y′′− 5xy′+ 9y = 0 that is valid in any interval not
containing the singular point.

The is an Euler equation (since the power of x in the coefficient is the same as the derivative), and the singular point is
x = 0.

Assume a solution looks like y = xr.

Differentiate, and substitute into the differential equation:

y = xr, y′ = rxr−1, y′′ = r(r − 1)xr−2

x2y′′ − 5xy′ + 9y = 0

r(r − 1)xr − 5rxr + 9xr = 0

r(r − 1)− 5r + 9 = 0

This is the indicial equation. Solving, we find (r − 3)2 = 0, so the root is r = 3 of multiplicity 2.

Therefore, one solution is y1(x) = x3.

If we forget the second solution looks like y2(x) = x3 ln |x| for a repeated root, we can always work it out using reduction
of order.

Assume y(x) = v(x)y1(x) = vx3.

y′ = v′x3 + 3vx2

y′′ = v′′x3 + 6v′x2 + 6vx
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Substitute into the differential equation, and determine v:

x2y′′ − 5xy′ + 9y = 0

x2(v′′x3 + 6v′x2 + 6vx)− 5x(v′x3 + 3vx2) + 9(vx3) = 0

v′′x5 + 6v′x4 +���6vx3 − 5v′x4 −���15vx3 +���9vx3 = 0

v′′x + v′ = 0
dv′

dx
x + v′ = 0∫

dv′

v′
= −

∫
dx

x

ln |v′|+ c1 = − ln |x|
ln |v′| = ln |x−1| − c1

|v′| = e−c1 |x−1|

v′ =
c2
x
, c2 = ec1∫

dv =

∫
c2
x

dx

v = c2 ln |x|+ c3

Another solution is therefore y(x) = v(x)y1(x) = c2x
3 ln |x|+ c3x

3. This is the general solution, and a fundamental set of
solutions is y1(x) = x3 and y2(x) = x3 ln |x|, which is valid for x 6= 0.

Example (5.4.17) Find all the singular points of the differential equation xy′′+(1−x)y′+xy = 0, and determine whether
each one is regular or irregular.

The general form of a linear second order differential equation is y′′ + p(x)y′ + q(x)y = 0.

Identify p(x) =
1− x

x
and q(x) =

x

x
= 1.

Since p(x) is not analytic at x = 0 (meaning there is no Taylor series with nonzero radius of convergence about x = 0),
x = 0 is a singular point.

Since xp(x) = 1− x and x2q(x) = x2 are both analytic at x = 0, we have x = 0 is a regular singular point.

Example (5.4.20) Find all the singular points of the differential equation x2(1 − x2)y′′ +
2

x
y′ + 4y = 0, and determine

whether each one is regular or irregular.

The general form of a linear second order differential equation is y′′ + p(x)y′ + q(x)y = 0.

Identify p(x) =
2

x3(1− x2)
and q(x) =

4

x2(1− x2)
.

Since p(x) is not analytic at x = 0, 1,−1 (meaning there is no Taylor series with nonzero radius of convergence about
x = 0, 1,−1), x = 0, 1,−1 are singular points. Also, q(x) is not analytic at these points.

We need to classify these points, taking each in turn.

x = 0:

Consider (x − 0)p(x) =
2

x2(1− x2)
and (x − 0)2q(x) =

4

1− x2
. Although x2q(x) is analytic at x = 0, since xp(x) is not

analytic at x = 0, the point x = 0 is an irregular singular point.

x = 1:

Consider (x− 1)p(x) = − 2

x3(1 + x)
and (x− 1)2q(x) =

4(1− x)

x3(1 + x)
. Both these are analytic at x = 1, so x = 1 is a regular

singular point.

x = −1:
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Consider (x+ 1)p(x) =
2

x3(1− x)
and (x+ 1)2q(x) =

4(1 + x)

x3(1− x)
. Both these are analytic at x = −1, so x = −1 is a regular

singular point.

Example (5.4.21) Find all the singular points of the differential equation (1 − x2)2y′′ + x(1 − x)y′ + (1 + x)y = 0, and
determine whether each one is regular or irregular.

The general form of a linear second order differential equation is y′′ + p(x)y′ + q(x)y = 0.

Identify p(x) =
x(1− x)

(1− x2)2
=

x

(1− x)(1 + x)2
and q(x) =

(1 + x)

(1− x2)2
=

1

(1− x)2(1 + x)
.

Since p(x) is not analytic at x = ±1 (meaning there is no Taylor series with nonzero radius of convergence about x = ±1),
x = ±1 are singular points. Also, q(x) is not analytic at these points.

We need to classify these points, taking each in turn.

x = −1:

Consider (x + 1)p(x) =
x

(1− x)(1 + x)
and (x + 1)2q(x) =

(x + 1)

(1− x)2
. Since (x + 1)p(x) is not analytic at x = −1, x = −1

is an irregular singular point.

x = 1:

Consider (x− 1)p(x) =
x

(1 + x)2
and (x− 1)2q(x) =

1

1 + x
. Both these are analytic at x = 1, so x = 1 is a regular singular

point.

Example (5.4.41) For the differential equation 2xy′′ + 3y′ + xy = 0, show that x = 0 is a regular singular point. Show
that there is only one nonzero solution of the form y =

∑∞
n=0 anx

n. In general, for regular singular points x0 there may
be no solutions of the form

∑∞
n=0 an(x− x0)n.

Identify p(x) =
3

2x
and q(x) =

1

2
.

Since p(x) is not analytic at x = 0, x = 0 is a singular point.

Consider xp(x) =
3

2
and x2q(x) =

x2

2
. Since both of these are analytic at x = 0, x = 0 is a regular singular point.

Assume:

y =

∞∑
n=0

anx
n

y′ =

∞∑
n=0

(n + 1)an+1x
n

y′′ =

∞∑
n=0

(n + 2)(n + 1)an+2x
n
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Substitute into the differential equation:

2x

∞∑
n=0

(n + 2)(n + 1)an+2x
n + 3

∞∑
n=0

(n + 1)an+1x
n + x

∞∑
n=0

anx
n = 0

2

∞∑
n=0

(n + 2)(n + 1)an+2x
n+1 + 3

∞∑
n=0

(n + 1)an+1x
n +

∞∑
n=0

anx
n+1 = 0

2

∞∑
n=1

(n + 1)nan+1x
n + 3

∞∑
n=0

(n + 1)an+1x
n +

∞∑
n=1

an−1x
n = 0

2

∞∑
n=1

(n + 1)nan+1x
n + 3a1x

0 + 3

∞∑
n=1

(n + 1)an+1x
n +

∞∑
n=1

an−1x
n = 0

3a1x
0 +

∞∑
n=1

[
2(n + 1)nan+1 + 3(n + 1)an+1 + an−1

]
xn = 0

For this to be true for all values of x, the coefficients of powers of x must be zero. This leads to the relations:

3a1 = 0

2(n + 1)nan+1 + 3(n + 1)an+1 + an−1 = 0, n = 1, 2, 3, . . .

These are the recurrence relations. Solving for the coefficients, we get

an+1 =
an−1

(n + 1)(2n + 3)
, n = 1, 2, 3, . . .

a0 = unspecified, not equal to zero

a1 = 0

a2 =
a0

2 · 5
a3 = 0

a4 =
a2

4 · 9
=

a0
2 · 4 · 5 · 9

Finding the pattern here is difficult, and see we only need to show there is only one solution of the form
∑

anx
n, the

important thing to note is that all the odd terms are zero, and the even terms all have the constant a0 in them.

The solution we find is y(x) = a0

(
1 +

x2

2 · 5
+

x4

2 · 4 · 5 · 9
+ . . .

)
.

So we only get one solution, and we cannot write a general solution.

This problem shows the failure of using Taylor series when looking for a series solution about a regular singular point.


