Questions

Example (4.1.4) Determine the intervals in which solutions are sure to exist for the differential equation $y^{\prime \prime \prime}+t y^{\prime \prime}+t^{2} y^{\prime}+$ $t^{3} y=\ln t$.
Example (4.1.6) Determine the intervals in which solutions are sure to exist for the differential equation $\left(x^{2}-4\right) y^{(i v)}+$ $x^{2} y^{\prime \prime \prime}+9 y=0$.
Example (4.1.7) Determine whether the functions $f_{1}(t)=2 t-3, f_{2}(t)=t^{2}+1$, and $f_{3}(t)=2 t^{2}-t$ are linearly independent or linearly dependent. If they are linearly dependent, find a relation between them.
Example (4.1.11) Verify the functions $f_{1}(t)=1, f_{2}(t)=\cos t$, and $f_{3}(t)=\sin t$ are solutions of the differential equation $y^{\prime \prime \prime}+y^{\prime}=0$. Determine their Wronskian.
Example (4.2.1) Express $1+i$ in the form $R(\cos \theta+i \sin \theta)=R e^{i \theta}$.
Example (4.2.3) Express $1-3$ in the form $R(\cos \theta+i \sin \theta)=R e^{i \theta}$.
Example (4.2.4) Express $-i$ in the form $R(\cos \theta+i \sin \theta)=R e^{i \theta}$.
Example (4.2.8) Find the square root of the complex number $1-i$.
Example (4.2.11) Find the general solution of the differential equation $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$.
Example (4.2.13) Find the general solution of the differential equation $2 y^{\prime \prime \prime}-4 y^{\prime \prime}-2 y^{\prime}+4 y=0$.
Example (4.2.18) Find the general solution of the differential equation $y^{(6)}-y^{\prime \prime}=0$.

Solutions

Example (4.1.4) Determine the intervals in which solutions are sure to exist for the differential equation $y^{\prime \prime \prime}+t y^{\prime \prime}+t^{2} y^{\prime}+$ $t^{3} y=\ln t$.
The functions $P_{1}(t)=t, P_{2}(t)=t^{2}$ and $P_{3}(t)=t^{3}$ are continuous on $t \in(-\infty, \infty)$.
$g(t)=\ln t$ is continuous on $t \in(0, \infty)$.
Therefore, a solution exists on the interval $I=(0, \infty)$.
Example (4.1.6) Determine the intervals in which solutions are sure to exist for the differential equation $\left(x^{2}-4\right) y^{(i v)}+$ $x^{2} y^{\prime \prime \prime}+9 y=0$.
Rewrite in standard form: $y^{(i v)}+\frac{x^{2}}{x^{2}-4} y^{\prime \prime \prime}+\frac{9}{x^{2}-4} y=0$.
The functions $P_{3}(t)=\frac{x^{2}}{x^{2}-4}, P_{6}(t)=\frac{9}{x^{2}-4}$ are continuous on $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.
Therefore, solutions are sure to exist on the interval $(-\infty,-2),(-2,2)$, and $(2, \infty)$.
Example (4.1.7) Determine whether the functions $f_{1}(t)=2 t-3, f_{2}(t)=t^{2}+1$, and $f_{3}(t)=2 t^{2}-t$ are linearly independent
or linearly dependent. If they are linearly dependent, find a relation between them.

$$
\begin{aligned}
W\left(f_{1}, f_{2}, f_{3}\right)(t) & =\left|\begin{array}{ccc}
f_{1}(t) & f_{2}(t) & f_{3}(t) \\
f_{1}^{\prime}(t) & f_{2}^{\prime}(t) & f_{3}^{\prime}(t) \\
f_{1}^{\prime \prime}(t) & f_{2}^{\prime \prime}(t) & f_{3}^{\prime \prime}(t)
\end{array}\right| \\
& =\left|\begin{array}{ccc}
2 t-3 & t^{2}+1 & 2 t^{2}-t \\
2 & 2 t & 4 t-1 \\
0 & 2 & 4
\end{array}\right| \\
& =(2 t-3)\left|\begin{array}{cc}
2 t & 4 t-1 \\
2 & 4
\end{array}\right|-(2)\left|\begin{array}{cc}
t^{2}+1 & 2 t^{2}-t \\
2 & 4
\end{array}\right|+(0)\left|\begin{array}{cc}
t^{2}+1 & 2 t^{2}-t \\
2 t & 4 t-1
\end{array}\right| \\
& =(2 t-3)(8 t-8 t+2)-(2)\left(4 t^{2}+4-4 t^{2 x}+4 t\right) \\
& =4 t-6-8-8 t \\
& =-4 t-14 \neq 0 \text { for } t=0
\end{aligned}
$$

Therefore, $2 t-3, t^{2}+1$, and $2 t^{2}-t$ are linearly independent.
Example (4.1.11) Verify the functions $f_{1}(t)=1, f_{2}(t)=\cos t$, and $f_{3}(t)=\sin t$ are solutions of the differential equation $y^{\prime \prime \prime}+y^{\prime}=0$. Determine their Wronskian.

Verify they are solutions via direct substitution:

$$
\begin{aligned}
& y_{1}(t)=1, \quad y_{1}^{\prime}(t)=0, \quad y_{1}^{\prime \prime}(t)=0, \quad y_{1}^{\prime \prime \prime}(t)=0 . \\
& y^{\prime \prime \prime}+y^{\prime}=0+0=0 . \\
& y_{2}(t)=\cos t, \quad y_{2}^{\prime}(t)=-\sin t, \quad y_{2}^{\prime \prime}(t)=-\cos t, \quad y_{2}^{\prime \prime \prime}(t)=\sin t . \\
& y^{\prime \prime \prime}+y^{\prime}=\sin t+(-\sin t)=0 . \\
& y_{3}(t)=\sin t, \quad y_{3}^{\prime}(t)=\cos t, \quad y_{3}^{\prime \prime}(t)=-\sin t, \quad y_{3}^{\prime \prime \prime}(t)=-\cos t . \\
& y^{\prime \prime \prime}+y^{\prime}=-\cos t+(\cos t)=0 .
\end{aligned}
$$

$$
\begin{aligned}
W(1, \cos t, \sin t)(t) & =\left|\begin{array}{ccc}
1 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
0 & -\cos t & -\sin t
\end{array}\right| \\
& =(1)\left|\begin{array}{cc}
-\sin t & \cos t \\
-\cos t & -\sin t
\end{array}\right|+0 \\
& =\sin ^{2} t+\cos ^{2} t=1
\end{aligned}
$$

Therefore, $1, \cos t$, and $\sin t$ are linearly independent.
Examples (4.2.1) (4.2.3) and (4.2.4) See Mathematica file.
Example (4.2.8) Find the square root of the complex number $1-i$.
From the Mathematica file we see that we have $1-i=\sqrt{2} \exp (i(7 \pi / 4+2 \pi m)), m=\ldots,-2,-1,0,1,2, \ldots$

$$
\begin{aligned}
(1-i)^{1 / 2} & =(\sqrt{2} \exp (i(7 \pi / 4+2 \pi m)))^{1 / 2} \\
& =2^{1 / 4} \exp (i(7 \pi / 8+\pi m)) \\
& =2^{1 / 4} \exp (i(7 \pi / 8+\pi(0))) \text { or } 2^{1 / 4} \exp (i(7 \pi / 8+\pi(1))) \quad \text { other } m \text { produce these same two values } \\
& =2^{1 / 4} \exp (7 \pi i / 8) \text { or } 2^{1 / 4} \exp (15 \pi i / 8) \\
& =2^{1 / 4}(\cos (7 \pi / 8)+i \sin (7 \pi / 8)) \text { or } 2^{1 / 4}(\cos (15 \pi / 8)+i \sin (15 \pi / 8))
\end{aligned}
$$

Example (4.2.11) Find the general solution of the differential equation $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation: $y=e^{r t}, y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t}, y^{\prime \prime \prime}=r^{3} e^{r t}$.

$$
\begin{aligned}
y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y & =0 \\
r^{3} e^{r t}-r^{2} e^{r t}-r e^{r t}+e^{r t} & =0 \\
r^{3}-r^{2}-r+1 & =0
\end{aligned}
$$

Now we need the roots of the characteristic equation. We can guess one root, and then factor it out and use the quadratic formula, or use Mathematica to get all the roots at once. We find the roots to be $r_{1}=-1$, and $r_{2}=1$ of multiplicity 2 , that is the characteristic equation can be written as

$$
(r-1)^{2}(r+1)=0
$$

Therefore, a general solution of the differential equation is $y(t)=c_{1} e^{-t}+c_{2} e^{t}+c_{3} t e^{t}$.
Example (4.2.13) Find the general solution of the differential equation $2 y^{\prime \prime \prime}-4 y^{\prime \prime}-2 y^{\prime}+4 y=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation:

$$
\begin{aligned}
y=e^{r t}, y^{\prime}=r e^{r t}, y^{\prime \prime}=r^{2} e^{r t}, y^{\prime \prime \prime} & =r^{3} e^{r t} . \\
2 y^{\prime \prime \prime}-4 y^{\prime \prime}-2 y^{\prime}+4 y & =0 \\
2 r^{3} e^{r t}-4 r^{2} e^{r t}-2 r e^{r t}+4 e^{r t} & =0 \\
2 r^{3}-4 r^{2}-2 r+4 & =0
\end{aligned}
$$

Now we need the roots of the characteristic equation. We can guess one root, and then factor it out and use the quadratic formula, or use Mathematica to get all the roots at once. We find the roots to be $r_{1}=1$, and $r_{2}=-1$, and $r_{3}=2$ of multiplicity 1 , that is the characteristic equation can be written as

$$
(r-1)(r+1)(r-2)=0
$$

Therefore, a general solution of the differential equation is $y(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{2 t}$.
Example (4.2.18) Find the general solution of the differential equation $y^{(6)}-y^{\prime \prime}=0$.
Since the differential equation has constant coefficients and is linear, we assume a solution looks like $y=e^{r t}$. Substitute into the differential equation to get the characteristic equation:

$$
\begin{aligned}
& y=e^{r t}, y^{(i)}=r^{i} e^{r t} \\
& y^{(6)}-y^{\prime \prime}=0 \\
& r^{6} y^{(6)}-r^{2} e^{r t}=0 \\
& r^{2}\left(r^{4}-1\right)=0 \\
& r^{2}\left(r^{2}-1\right)\left(r^{2}+1\right)=0 \\
& r^{2}(r-1)(r+1)(r-i)(r+i)=0
\end{aligned} \text { difference of squares }
$$

Therefore, $r_{1}=1$, and $r_{2}=-1$, and $r_{3}=i$, and $r_{4}=-i$ of multiplicity one, and $r_{5}=0$ of multiplicity two. Therefore, a general solution of the differential equation is $y(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} \cos t+c_{4} \sin t+c_{5}+c_{6} t$.

