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Questions

Example (5.5.1) Determine the solution to the differential equation 2xy′′ + y′ + xy = 0 about x0 = 0.

Example (5.5.3) Try to determine two solutions to the differential equation xy′′ + y = 0 about x0 = 0.

Example (5.6.1) Determine the exponents of the singularity for the differential equation xy′′ + 2xy′ + 6exy = 0 about
x0 = 0.

Example (5.6.11) Find the exponents at the singularity for all the regular singular points of the differential equation
(4− x2)y′′ + 2xy′ + 3y = 0.

Solutions

Example (5.5.1) Determine the solution to the differential equation 2xy′′ + y′ + xy = 0 about x0 = 0.

Identify p(x) =
1

2x
and q(x) =

1

2
.

Since p(x) is not analytic at x0 = 0, we have x0 = 0 as a singular point. Since xp(x) =
1

2
is analytic at x0 = 0, we have

x0 = 0 as a regular singular point. Since q(x) is analytic at x0 = 0, we don’t need to consider it.

Therefore, assume a solution looks like y =
∑∞

n=0 anx
n+r, and we will look for an indicial equation and recurrence relations.

y =

∞∑
n=0

anx
n+r

y′ =

∞∑
n=0

(n + r)anx
n+r−1

y′′ =

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2

Substitute into the differential equation

2xy′′ + y′ + xy = 0

2x

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2 +

∞∑
n=0

(n + r)anx
n+r−1 + x

∞∑
n=0

anx
n+r = 0

∞∑
n=0

2(n + r)(n + r − 1)anx
n+r−1 +

∞∑
n=0

(n + r)anx
n+r−1 +

∞∑
n=0

anx
n+r+1 = 0

∞∑
n=0

(2(n + r)(n + r − 1)an + (n + r)an)xn+r−1 +

∞∑
n=0

anx
n+r+1 = 0

∞∑
n=0

(n + r)(2n + 2r − 1)anx
n+r−1 +

∞∑
n=0

anx
n+r+1 = 0

∞∑
n=0

(n + r)(2n + 2r − 1)anx
n+r−1 +

∞∑
n=2

an−2x
n+r−1 = 0

r(2r − 1)a0x
r−1 + (1 + r)(2r + 1)a1x

r +

∞∑
n=2

(n + r)(2n + 2r − 1)anx
n+r−1 +

∞∑
n=2

an−2x
n+r−1 = 0

r(2r − 1)a0x
r−1 + (1 + r)(2r + 1)a1x

r +

∞∑
n=2

[
(n + r)(2n + 2r − 1)an + an−2

]
xn+r−1 = 0
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If this is true for all values of x, each coefficient of x must be zero, so we get the equations:

r(2r − 1)a0 = 0

(1 + r)(2r + 1)a1 = 0

(n + r)(2n + 2r − 1)an + an−2 = 0, n = 2, 3, 4, . . .

We can choose either of the first two equations from the above list as the indicial equation. Let’s choose the first, so we
must have a0 6= 0 and r(2r − 1) = 0, so the roots of the indicial equation are r = 0 and r = 1/2.

For each root of the indicial equation, we can try to get a series solution, since we will get different recurrence relations.

r = 0:

a0 = arbitrary, not equal to zero

(1 + 0)(2(0) + 1)a1 = 0 −→ a1 = 0

an = − an−2
n(2n− 1)

, n = 2, 3, 4, . . .

a2 = − a0
2 · 3

a3 = − a1
3 · 5

= 0

a4 = − a2
4 · 7

=
a0

2 · 3 · 4 · 7
a5 = − a3

5 · 9
= 0

a6 = − a4
6 · 11

= − a0
2 · 3 · 4 · 6 · 7 · 11

a7 = − a5
7 · 13

= 0

Therefore,

y(t) = a0x
0

(
1− x2

2 · 3
+

x4

2 · 3 · 4 · 7
− x6

2 · 3 · 4 · 6 · 7 · 11
+ . . .

)
.

Since a0 is arbitrary, but not equal to zero, we can set a0 = 1. A first solution of the differential equation is

y1(t) = 1− x2

2 · 3
+

x4

2 · 3 · 4 · 7
− x6

2 · 3 · 4 · 6 · 7 · 11
+ . . . .

r = 1/2:

a0 = arbitrary, not equal to zero

(1 + 1/2)(2(1/2) + 1)a1 = 0 −→ a1 = 0

an = − an−2
n(2n + 1)

, n = 2, 3, 4, . . .

a2 = − a0
2 · 5

a3 = − a1
3 · 7

= 0

a4 = − a2
4 · 9

=
a0

2 · 4 · 5 · 9
a5 = − a3

5 · 9
= 0

a6 = − a4
6 · 13

= − a0
2 · 4 · 5 · 6 · 9 · 13

a7 = − a5
7 · 13

= 0



Differential Equations Practice: Series Solutions about Regular Singular Point Page 3

Therefore,

y(t) = a0x
1/2

(
1− x2

2 · 5
+

x4

2 · 4 · 5 · 9
− x6

2 · 4 · 5 · 6 · 9 · 13
+ . . .

)
.

Since a0 is arbitrary, but not equal to zero, we can set a0 = 1. A second solution of the differential equation is

y2(t) = x1/2

(
1− x2

2 · 5
+

x4

2 · 4 · 5 · 9
− x6

2 · 4 · 5 · 6 · 9 · 13
+ . . .

)
.

If we had chosen the second equation as the indicial equation, we would get exactly the same solutions. Let’s work it
through for one solution, and see what happens.

The indicial equation (1 + r)(2r + 1)a1 = 0 tells us that so we must have a1 6= 0 and (1 + r)(2r + 1) = 0, so the roots of
the indicial equation are r = −1 and r = −1/2.

r = −1:

(−1)(2(−1)− 1)a0 = 0 −→ a0 = 0

a1 = arbitrary, not equal to zero

an = − an−2
(2n− 3)(n− 1)

, n = 2, 3, 4, . . .

a2 = − a0
2 · 3

= 0

a3 = − a1
3 · 2

a4 = − a2
3 · 5

= 0

a5 = − a3
7 · 4

=
a1

2 · 3 · 4 · 7
a6 = − a4

9 · 5
= 0

a7 = − a5
11 · 6

= − a1
2 · 3 · 4 · 6 · 7 · 11

Therefore,

y(t) = a1x
−1
(
x− x3

2 · 3
+

x5

2 · 3 · 4 · 7
− x7

2 · 3 · 4 · 6 · 7 · 11
+ . . .

)
.

Since a1 is arbitrary, but not equal to zero, we can set a1 = 1. A solution of the differential equation is

y1(t) = x−1
(
x− x3

2 · 3
+

x5

2 · 3 · 4 · 7
− x7

2 · 3 · 4 · 6 · 7 · 11
+ . . .

)
= 1− x2

2 · 3
+

x4

2 · 3 · 4 · 7
− x6

2 · 3 · 4 · 6 · 7 · 11
+ . . . .

which is what we found before.

This is because we shifted the values of r by −1, but also shifted the an by +1, which results in exactly the same solution.

Example (5.5.3) Try to determine two solutions to the differential equation xy′′ + y = 0 about x0 = 0.

Identify p(x) = 0 and q(x) =
1

x
.

Since q(x) is not analytic at x0 = 0, we have x0 = 0 as a singular point. Since x2q(x) = x is analytic at x0 = 0, we have
x0 = 0 as a regular singular point. Since p(x) is analytic at x0 = 0, we don’t need to consider it.
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Therefore, assume a solution looks like y =
∑∞

n=0 anx
n+r, and we will look for an indicial equation and recurrence relations.

y =

∞∑
n=0

anx
n+r

y′ =

∞∑
n=0

(n + r)anx
n+r−1

y′′ =

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2

Substitute into the differential equation

xy′′ + y = 0

x

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−2 +

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−1 +

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n + r)(n + r − 1)anx
n+r−1 +

∞∑
n=1

an−1x
n+r−1 = 0

r(r − 1)a0x
r−1 +

∞∑
n=1

(n + r)(n + r − 1)anx
n+r−1 +

∞∑
n=1

an−1x
n+r−1 = 0

r(r − 1)a0x
r−1 +

∞∑
n=1

[
(n + r)(n + r − 1)an + an−1

]
xn+r−1 = 0

If this is true for all values of x, each coefficient of x must be zero, so we get the equations:

r(r − 1)a0 = 0

(n + r)(n + r − 1)an + an−1 = 0, n = 1, 2, 3, 4, . . .

The first equation is the indicial equation, so we must have a0 6= 0 and r(r − 1) = 0, so the roots of the indicial equation
are r = 0 and r = 1. These differ by an integer, so we might expect that we will have trouble finding two solutions. You
should always choose to work with the largest root of the indicial equation first.

r = 1:

a0 = arbitrary, not equal to zero

an = − an−1
n(n + 1)

, n = 1, 2, 3, 4, . . .

a1 = − a0
1 · 2

a2 = − a1
2 · 3

=
a0

1 · 2 · 2 · 3
a3 = − a2

3 · 4
= − a0

1 · 2 · 3 · 2 · 3 · 4
an = (−1)n

a0
n!(n + 1)!

Therefore,

y(t) = xr
∞∑

n=0

anx
n = a0x

∞∑
n=0

(−1)n
xn

n!(n + 1)!
.
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Since a0 is arbitrary, but not equal to zero, we can set a0 = 1. A first solution of the differential equation is

y1(t) =

∞∑
n=0

(−1)n
xn+1

n!(n + 1)!
.

Let’s see what happens if we try to find a second solution:

r = 0:

a0 = arbitrary, not equal to zero

an = − an−1
n(n− 1)

, n = 1, 2, 3, 4, . . .

a1 = − a0
1(1− 1)

We get division by zero, so we cannot determine a second solution. We will revisit this topic again in more detail in Section
5.7, where we use reduction of order to get a second solution. This is also discussed in Section 5.6.

Example (5.6.1) Determine the exponents of the singularity for the differential equation xy′′ + 2xy′ + 6exy = 0 about
x0 = 0.

Identify p(x) =
2x

x
= 2 and q(x) =

6ex

x
.

Since p(x) is not analytic at x0 = 0, we have x0 = 0 as a singular point. Since xp(x) = 2x and x2q(x) = 6xex are both
analytic at x0 = 0, we have x0 = 0 as a regular singular point.

The exponents of the singularity are the solutions to the indicial equation, and the indicial equation can be found from the
associated Euler equation. We need the Taylor series expansions of xp(x) and x2q(x):

xp(x) = 2x

=

∞∑
n=0

pnx
n

= p0 + p1x + p2x
2 + p3x

3 + · · ·

so p0 = 0 (the only nonzero coefficient is p1 = 2).

x2q(x) = 6xex

= 6x

∞∑
n=0

xn

n!

= 6x + 6x2 + 6
x3

2
+ · · ·

=

∞∑
n=0

qnx
n

= q0 + q1x + q2x
2 + q3x

3 + · · ·

so q0 = 0.

The associated Euler equation replaces xp(x) ∼ p0 and x2q(x) ∼ q0, so our equation becomes:

xy′′ + 2xy′ + 6exy = 0

x2y′′ + x · 2xy′ + 6xexy = 0

x2y′′ + x · p0y′ + q0y = 0 associated Euler equation

x2y′′ + x · (0)y′ + (0)y = 0

x2y′′ = 0 (1)
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This can be solved by assuming y = xr; y′′ = r(r − 1)xr−2, so substituting into Eq. (??),

x2r(r − 1)xr = 0

r(r − 1) = 0 indicial equation

So the exponents at the singularity are r1 = 0 and r2 = 1.

Example (5.6.11) Find the exponents at the singularity for all the regular singular points of the differential equation
(4− x2)y′′ + 2xy′ + 3y = 0.

First, we need to find the regular singular points.

Identify p(x) =
2x

4− x2
=

2x

(2− x)(2 + x)
and q(x) =

3

4− x2
=

3

(2− x)(2 + x)
.

Since p(x) is not analytic at x0 = ±2, we have x0 = ±2 as singular points. These are also the singular points for q(x).

Consider x = +2:

Since (x − 2)p(x) = − 2x

2 + x
and (x − 2)2q(x) = −3(x− 2)

2 + x
are both analytic at x0 = +2, we have x0 = +2 as a regular

singular point.

Consider x = −2:

Since (x+2)p(x) =
2x

2− x
and (x+2)2q(x) =

3(x + 2)

2− x
are both analytic at x0 = −2, we have x0 = −2 as a regular singular

point.

OK, now we need to determine the exponents at the singularity for each regular singular point.

Consider x = +2:

The exponents of the singularity are the solutions to the indicial equation, and the indicial equation can be found from the
associated Euler equation. We need the Taylor series expansions of (x− 2)p(x) and (x− 2)2q(x):

(x− 2)p(x) = − 2x

2 + x

= −1− 1

4
(x− 2) +

1

16
(x− 2)2 + · · · Taylor series about x0 = −2

= p0 + p1(x− 2) + p2(x− 2)2 + p3(x− 2)3 + · · ·

so p0 = −1.

(x− 2)2q(x) = −3(x− 2)

2 + x

= 0− 3

4
(x− 2) +

3

16
(x− 2)3 − · · · Taylor series about x0 = −2

= q0 + q1(x− 2) + q2(x− 2)2 + q3(x− 2)3 + · · ·

so q0 = 0.
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The associated Euler equation replaces (x− 2)p(x) ∼ p0 and (x− 2)2q(x) ∼ q0, so our equation becomes:

(4− x2)y′′ + 2xy′ + 3y = 0

y′′ +
2x

(2− x)(2 + x)
y′ +

3

(2− x)(2 + x)
y = 0

(x− 2)2y′′ + (x− 2) · (x− 2)
2x

(2− x)(2 + x)
y′ + (x− 2)2

3

(2− x)(2 + x)
y = 0

(x− 2)2y′′ − (x− 2) · 2x

2 + x
y′ − 3(x− 2)

2 + x
y = 0

(x− 2)2y′′ + (x− 2)p0y
′ + q0y = 0 associated Euler equation

(x− 2)2y′′ + (x− 2)(−1)y′ + (0)y = 0

(x− 2)2y′′ − (x− 2)y′ = 0 (2)

This can be solved by assuming y = (x− 2)r; y′ = r(x− 2)r−1, y′′ = r(r − 1)(x− 2)r−2, so substituting into Eq. (??),

(x− 2)2r(r − 1)(x− 2)r−2 − (x− 2)r(x− 2)r−1 = 0

r(r − 1)− r = 0 indicial equation

r(r − 2) = 0

So the exponents at the singularity x0 = −2 are r1 = 0 and r2 = 2.

Consider x = −2:

The exponents of the singularity are the solutions to the indicial equation, and the indicial equation can be found from the
associated Euler equation. We need the Taylor series expansions of (x + 2)p(x) and (x + 2)2q(x):

(x + 2)p(x) =
2x

2− x

= −1 +
1

4
(x + 2) +

1

16
(x + 2)2 + · · · Taylor series about x0 = +2

= p0 + p1(x + 2) + p2(x + 2)2 + p3(x + 2)3 + · · ·

so p0 = −1.

(x + 2)2q(x) =
3(x + 2)

2− x

= 0 +
3

4
(x + 2) +

3

16
(x + 2)3 − · · · Taylor series about x0 = +2

= q0 + q1(x + 2) + q2(x + 2)2 + q3(x + 2)3 + · · ·

so q0 = 0.

The associated Euler equation replaces (x + 2)p(x) ∼ p0 and (x + 2)2q(x) ∼ q0, so our equation becomes:

(4− x2)y′′ + 2xy′ + 3y = 0

y′′ +
2x

(2− x)(2 + x)
y′ +

3

(2− x)(2 + x)
y = 0

(x + 2)2y′′ + (x + 2) · (x + 2)
2x

(2− x)(2 + x)
y′ + (x + 2)2

3

(2− x)(2 + x)
y = 0

(x + 2)2y′′ + (x + 2) · 2x

2− x
y′ +

3(x + 2)

2− x
y = 0

(x + 2)2y′′ + (x + 2)p0y
′ + q0y = 0 associated Euler equation

(x + 2)2y′′ + (x + 2)(−1)y′ + (0)y = 0

(x + 2)2y′′ − (x + 2)y′ = 0 (3)
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This can be solved by assuming y = (x + 2)r; y′ = r(x + 2)r−1, y′′ = r(r − 1)(x + 2)r−2, so substituting into Eq. (??),

(x + 2)2r(r − 1)(x + 2)r−2 − (x + 2)r(x + 2)r−1 = 0

r(r − 1)− r = 0 indicial equation

r(r − 2) = 0

So the exponents at the singularity x0 = −2 are r1 = 0 and r2 = 2.

If we can remember the following form, we can get the indicial equation directly from F (r) = r(r− 1) + p0r + q0, which is
the from of the indicial equation for the associated Euler equation. If we forget it, we can use the process described in the
solutions to create and solve the associated Euler equation.


