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Composite Quadrature

We are interested in approximating

∫ b

a

f(x) dx.

We again begin with the Lagrange interpolating polynomial.

f(x) = Pn(x) +
1

(n + 1)!
f (n+1)(c(x))

n∏
i=0

(x− xi),

Pn(x) =
n∑

k=0

f(xk)Lnk(x),

Lnk(x) =
n∏

i=0,i 6=k

(x− xi)

(xk − xi)
.

When deriving the point formulas it is standard to use points starting at x0, and use equally spaced points:

x0, x1 = x0 + h, x2 = x0 + 2h, . . . , xn = x0 + nh.

Let’s integrate and see what happens.

f(x) =
n∑

k=0

f(xk)Lnk(x) +
1

(n + 1)!
f (n+1)(c(x))

n∏
i=0

(x− xi)∫ b

a

f(x) dx =
n∑

k=0

f(xk)

∫ b

a

Lnk(x) dx +
1

(n + 1)!

∫ b

a

f (n+1)(c(x))
n∏

i=0

(x− xi) dx

=
n∑

k=0

ankf(xk) + E(f)

where

ank =

∫ b

a

Lnk(x) dx

E(f) =
1

(n + 1)!

∫ b

a

f (n+1)(c(x))
n∏

i=0

(x− xi) dx

To compute E(f) we can use the two theorem:

1. Weighted Mean Value Theorem for Integrals: If g(x) does not change sign on [a, b] then there exists

c ∈ (a, b) such that

∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx.

2. Generalized Intermediate Value Theorem Let f be a continuous function on the interval [a, b]. Let
x0, . . . , xn be points in [a, b] and a0, . . . , an > 0. Then there exists a number c between a and b such that

(a1 + · · ·+ an)f(c) = a1f(x1) + · · ·+ anf(xn).
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We will set everything up initially on a single partition, then use the single partition result to extend to multiple
partitions.

Useful results:

L00(x) = 1

L10(x) =
x− x1

x0 − x1

L11(x) =
x− x0

x1 − x0

Mathematica can help with the tedious integration:

Integrate[(x - x1)/(x0 - x1), {x, a, b}]

% /. x0 -> a /. x1 -> a + h /. b -> a + h

Simplify[%]

Case n = 0: x0 = a and h = b− a (Left Hand Rule)

∫ b

a

f(x) dx = a00f(x0) + E(f)

a00 =

∫ b

a

L00(x) dx =

∫ b

a

1 dx = b− a

= h

Now, since (x− x0) does not change sign in [a, b], we can use the Weighted Mean Value Theorem for Integrals to
simplify the error as

E(f) =

∫ b

a

f (1)(c(x))(x− x0) dx

= f (1)(c0)

∫ b

a

(x− x0) dx, where c0 ∈ (a, b)

= f (1)(c0)
(b− a)2

2

= f (1)(c0)
h2

2

Therefore we have recovered the Left Hand Rule:∫ x0+h

x0

f(x) dx = hf(x0) + h2f
(1)(c0)

2
(Left Hand Rule)
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Case n = 1: equally spaced nodes x0 = a, x1 = b, h = b− a (Trapezoidal Rule)

∫ b

a

f(x) dx = a10f(x0) + a11f(x1) + E(f)

a10 =

∫ b

a

L10(x) dx =

∫ b

a

x− x1

x0 − x1

dx

=
h

2

a11 =

∫ b

a

L11(x) dx =

∫ b

a

x− x0

x1 − x0

dx

=
h

2

Now, since (x−x0)(x−x1) does not change sign in [a, b] = [x0, x1], we can use the Weighted Mean Value Theorem
for Integrals to simplify the error as

E(f) =
1

2

∫ b

a

f (2)(c(x))(x− x0)(x− 1) dx

=
1

2
f (2)(c0)

∫ b

a

(x− x0)(x− x1) dx, where c0 ∈ (a, b)

=
1

2
f (2)(c0)

(
−h3

6

)
= −h3f

(2)(c0)

12

Therefore we have recovered the Trapezoidal Rule:∫ x1

x0

f(x) dx =
h

2
(f(x0) + f(x1))− h3f

(2)(c0)

12
(Trapezoidal Rule)

Case n = 0: x0 = a + h/2 and h = b− a (MidPoint Rule)

∫ b

a

f(x) dx = a00f(x0) + E(f)

a00 =

∫ b

a

L00(x) dx =

∫ b

a

1 dx = b− a

= h

Now, since (x− x0) does not change sign in [a, b], we can use the Weighted Mean Value Theorem for Integrals to
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simplify the error as

E(f) =

∫ b

a

f (1)(c(x))(x− x0) dx

= f (1)(c0)

∫ b

a

(x− x0) dx, where c0 ∈ (a, b)

= f (1)(c0)

(
(x− x0)

2

2

)b

a

= f (1)(c0)

(
(b− x0)

2

2
− (a− x0)

2

2

)
= f (1)(c0)

(
(h/2)2

2
− (−h/2)2

2

)
= 0

Whoops. To get the correct error we just need to keep higher derivatives, or switch to a Taylor Series represen-
tation. Let’s do the latter, since this would be something you could do in all cases.

f(x) = f(x0) + f ′(x0)(x− x0) +
f (2)(c(x))

2
(x− x0)

2∫ b

a

f(x) dx = f(x0)(b− a) +
1

2
f ′(x0)(x− x0)

2
∣∣∣b
a

+

∫ b

a

f (2)(c(x))

2
(x− x0)

2 dx

Since (x − x0)
2 is positive, we can use the weighted mean value theorem (also note the second integral is zero,

which is what we found above).∫ b

a

f(x) dx = hf(x0) +
f (2)(c0)

2

∫ b

a

(x− x0)
2 dx where c ∈ [a, b]

= hf(x0) + h3f
(2)(c0)

24

Therefore we have recovered the Midpoint Rule:∫ x0+h/2

x0−h/2
f(x) dx = hf(x0) + h3f

(2)(c0)

24
(Midpoint Rule)

As with derivatives, Mathematica can help do the algebra for you and create more formulas.

A Note About The Error

In all of the above examples, the weighted mean value theorem applied since the quantity
∏n

i=0(x− xi) does not
change sign for n = 0 or n = 1 when a = x0 and b = x1. However, when we do n = 2, things get a bit more
complicated.
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Case n = 2: equally spaced nodes x0 = a, x2 = b, x1 = a + h, h = (b− a)/2 (Simpson’s
Rule)

∫ b

a

f(x) dx = a20f(x0) + a21f(x1) + a22f(x2) + E(f)

a20 =

∫ b

a

L20(x) dx =
h

3

a21 =

∫ b

a

L21(x) dx =
4h

3

a22 =

∫ b

a

L22(x) dx =
h

3

Now, tackle the error. We cannot use the Weighted Mean Value Theorem for Integrals to simplify the error since
(x− x0)(x− x1)(x− x2) changes sign on the interval [a, b] = [x0, x2]. However, if we split the integral up we can
get around this.

E(f) =
1

6

∫ b

a

f (3)(c(x))(x− x0)(x− x1)(x− x2) dx

=
1

6

∫ x1

x0

f (3)(c(x))(x− x0)(x− x1)(x− x2) dx +
1

6

∫ x2

x1

f (3)(c(x))(x− x0)(x− 1)(x− x2) dx

Now, on each integral we can apply the Weighted Mean Value Theorem for Integrals, so we have for ci ∈ (xi, xi+1):

E(f) =
1

6
f (3)(c0)

∫ x1

x0

(x− x0)(x− x1)(x− x2) dx +
1

6
f (3)(c1)

∫ x2

x1

(x− x0)(x− 1)(x− x2) dx

=
1

6
f (3)(c0)

(
h4

4

)
+

1

6
f (3)(c1)

(
−h4

4

)
=

h4

24

(
f (3)(c0)− f (3)(c1)

)
Therefore we have recovered Simpson’s Rule:∫ b

a

f(x) dx =
h

3

(
f(x0) + 4f(x1) + f(x2)

)
+

h4

24

(
f (3)(c0)− f (3)(c1)

)
(Simpson’s Rule)

• Notice that we might expect f (3)(c0) − f (3)(c1) ∼ 0 (this is the sort of idea we will soon use for adaptive
quadrature), and if that is the case it seems like we might have an error that is better than 0(h4).
• If we instead derive Simpson’s Rule using Taylor series about x1 one can show the error goes as O(h5). Let’s

do that, since it is interesting.

f(x) = f(x1) + f (1)(x1)(x− x1) +
1

2
f (2)(x1)(x− x1)

2 +
1

6
f (3)(x1)(x− x1)

3 +
f (4)(c(x))

24
(x− x1)

4∫ b

a

f(x) dx = 2hf(x1) + 0 +
h3

3
f (2)(x1) + 0 +

∫ b

a

f (4)(c(x))

24
(x− x1)

4 dx



Math 4401
Composite Quadrature Page 6

Since (x− x1)
4 is positive, we can use the weighted mean value theorem.∫ b

a

f(x) dx = 2hf(x1) +
h3

3
f (2)(x1) +

f (4)(c0)

24
·
(

2h5

5

)
Notice at this point we still have f (2) in the formula. We can replace it with an earlier 3-point formula for
derivative:∫ b

a

f(x) dx = 2hf(x1) +
h3

3

(
1

h2
[f(x0)− 2f(x1) + f(x2)]−

h2

12
f (4)(c1)

)
+

f (4)(c0)

24
·
(

2h5

5

)
=

h

3

(
f(x0) + 4f(x1) + f(x2)

)
− h5

(
1

36
f (4)(c1)−

1

60
f (4)(c0)

)
This shows the error goes as O(h5). If we can assume f (4)(c0) ∼ f (4)(c1) f (4)(c), where c ∈ [a, b] we arrive at
Simpson’s Rule with best error estimate:∫ x2

x0

f(x) dx =
h

3

(
f(x0) + 4f(x1) + f(x2)

)
− h5f

(4)(c)

90
(Simpson’s Rule)

See the article Simpson’s Rule is Exact for Quintics to see a significantly more involved discussion of the error in
Simpson’s rule if you are interested–it is quite a good read!

These methods are called Newton’s-Cotes formulas.

• Closed methods include the endpoints as nodes (left-hand rule, trapezoidal rule, Simpson’s rule).
• Open methods do not include the endpoints as nodes (midpoint rule).

So far the formulas were on a single partition of the region [a, b], or at most two partitions (Simpson’s rule). We
can of course use these results over multiple partitions, a process that is called composite numerical integration.
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Composite Trapezoidal Rule

Split the region up as a = x0 < x1 < x2 · · · < xm−1 < xm = b where xi+1 = xi + h. Note: In the Mathematica
file, I just set up a module to call the single interval result. The following is useful to obtain the results you see
in calculus, as well as the error term.

On interval [xi, xi+1] we can use (for this example choose the Trapezoidal rule):∫ xi+1

xi

f(x) dx =
h

2
(f(xi) + f(xi+1))− h3f

(2)(ci)

12

Sum over m subintervals:∫ b

a

f(x) dx =
m−1∑
i=0

∫ xi+1

xi

f(x) dx

=
h

2

m−1∑
i=0

(f(xi) + f(xi+1))− h3

m−1∑
i=0

f (2)(ci)

12

The error term can be simplified using the generalized intermediate value theorem:

m−1∑
i=0

f(xi) = f(x0) +
m−1∑
i=1

f(xi)

m−1∑
i=0

f(xi+1) =
m∑
i=1

f(xi) = f(xm) +
m−1∑
i=1

f(xi)

−h3

m−1∑
i=0

f (2)(ci)

12
= −h3m

f (2)(c)

12
where c ∈ [a, b]

= −h2(b− a)
f (2)(c)

12
since mh = b− a

So the composite trapezoidal rule is∫ b

a

f(x) dx =
h

2

(
f(a) + f(b) + 2

m−1∑
i=1

f(xi)

)
− h2(b− a)

f (2)(c)

12
(Composite Trapezoidal)

The composite Simpson’s rule is derived in the text, following the same procedure as above.∫ b

a

f(x) dx =
h

3

(
f(a) + f(b) + 4

m∑
i=1

f(x2i−1) + 2
m−1∑
i=1

f(x2i)

)
− h4(b− a)

f (4)(c)

180
(Composite Simpson’s)


