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Orthogonal Polynomials

Orthogonal polynomials arise from series solutions to differential equations, although they can be arrived at
in a variety of different manners. Orthogonal polynomials are well studied, and their properties are generally well
understood, so they are a useful tool, especially when used as a basis set.

The set of functions {φ0(x), . . . , φn(x)} is linearly independent on [a, b] if whenever

c0φ0(x) + c1φ1(x) + · · ·+ cnφn(x) =
n∑
i=1

ciφi(x) = 0 for all x ∈ [a, b]

then c0 = c1 = · · · = cn = 0. Otherwise, the set is linearly dependent.

An integrable function w is called a weight function on [a, b] if w(x) ≥ 0 for x ∈ [a, b] but w(x) 6≡ 0 on any
subinterval of [a, b]. The weight function assigns varying degrees of importance to portions of the interval [a, b].

The set of functions {φ0(x), . . . , φn(x)} is orthogonal on [a, b] with respect to the weight function w if∫ b

a

w(x)φi(x)φj(x) dx = αiδij

where δij = 1 if i = j and is zero otherwise. The constant αi > 0.

If αi = 1 for all i, then the set of functions is orthonormal.

Example For a given positive integer n, the set of functions {φ0(x), . . . , φ2n−1(x)}

φ0(x) =
1√
2π
,

φk(x) =
1√
π

cos kx, where k = 1, 2, . . . , n,

φn+k(x) =
1√
π

sin kx, where k = 1, 2, . . . , n− 1,

is an orthonormal set on interval [−π, π] with respect to weight function w(x) = 1.

This set of functions can be used as a basis set to create a least squares approximation to any function f in the
interval [−π, π]

f(x) ∼ Sn(x) =
2n−1∑
k=0

akφk(x),

where

ak =

∫ π

−π
f(x)φk(x) dx.

The function lim
n→∞

Sn(x) is called the Fourier series of f .

The basic idea is that for a given weight function and interval we can create a set of orthogonal
polynomials using Gram Schmidt orthogonalization.
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Here is a table of common orthogonal polynomials.

Polynomial Interval weight Normalization

φn(x) (a, b) w(x)
∫ b
a
w(x)φ2

n(x) dx
Legendre Pn(x) (−1, 1) 1 2/(2n+ 1)
Laguerre Ln(x) (0,∞) e−x 1

Hermite Hn(x) (−∞,∞) e−x
2

2nn!
√
π

Chebyshev 1st Kind Tn(x) (−1, 1) (1− x2)−1/2 π(n = 0) or π/2(n 6= 0)
Chebyshev 2nd Kind Un(x) (−1, 1) (1− x2)1/2 π/2

Note we could include the endpoints on the intervals, (−1, 1) or [−1, 1], etc.

The Gram-Schmidt Process to Construct Orthogonal Polynomials

The set of polynomials {φ0(x), . . . , φn(x)} defined in the following way is orthogonal on [a, b] with respect to the
weight function w.

φ0(x) = 1,

B1 =

∫ b

a

x w(x) [φ0(x)]2 dx∫ b

a

w(x) [φ0(x)]2 dx

,

φ1(x) = x−B1,

and then for k ≥ 2 use

φk(x) = (x−Bk)φk−1(x)− Ckφk−2(x),

Bk =

∫ b

a

x w(x) [φk−1(x)]2 dx∫ b

a

w(x) [φk−1(x)]2 dx

,

Ck =

∫ b

a

x w(x) φk−1(x)φk−2(x) dx∫ b

a

w(x) [φk−2(x)]2 dx

.

You can prove this using induction.

The Mathematica file shows how this can be used to construct the Legendre polynomials mentioned earlier.

Theorem If the set of orthogonal polynomials {φ0(x), . . . , φk(x), . . . , φn(x)} is defined on [a, b] with weight
function w, and φk(x) is a polynomial of degree k then φk(x) has k distinct roots (when k ≥ 1) in the interval
(a, b).
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Gaussian Quadrature: Initial Thoughts

1. Assume we can approximate the integral as the following sum:∫ b

a

w(x)f(x) dx ∼
n∑
i=1

cif(xi),

where we will have nodes x1, . . . , xn ∈ [a, b].

2. We want to find these nodes in an optimal way, rather than just having them equally spaced.

3. Our earlier theorem tells us the orthogonal polynomial φn(x) we define through the Gram-Schmidt process
will have n roots in the interval.

4. We have 2n parameters to determine: ci and xi for i = 1, . . . , n.

5. A polynomial of degree 2n− 1 has 2n parameters:

a0 + a1x+ · · ·+ a2n−1x
2n−1 =

2n−1∑
i=0

aix
i

Key Point: If f(x) is a polynomial of degree 2n − 1 or less, then we should get an exact result for the
integral since we have enough parameters to fit the curve exactly!

A quadrature rule with degree of precision k means the quadrature rule gives the exact result for any
polynomial of degree less than or equal to k

Example If n = 3 and w(x) = 1 and [a, b] = [−1, 1], our approximation should be exact if f(x) = 1, x, x2, x3, x4, x5.

Choose ci and xi such that∫ 1

−1
xk dx =

3∑
i=1

cix
k
i , k = 0, 1, . . . , 5.

This is a set of 6 nonlinear equations in 6 unknowns, which we will use Mathematica to solve. We get

c1 = 0.555555

c2 = 0.555555

c3 = 0.888888

x1 = 0.774597

x2 = −0.774597

x3 = 0

Each ci is the weight associated with the node xi.

Now that we have these parameters, we can use the formula∫ 1

−1
f(x) dx ∼

n∑
i=1

cif(xi),

for any other function f we like.

In this case, since w(x) = 1 and [a, b] = [−1, 1] and n = 3, the nodes are the roots of the Legendre polynomial
P3(x).
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Proof of Gaussian Quadrature Technique for [a, b] = [−1, 1] and w(x) = 1 case

Now that we have an idea of what to expect, let’s work out the details for general n, and show that Gaussian
quadrature has degree of precision 2n− 1.

1. We again begin with the Lagrange interpolating polynomial.

f(x) =
n∑
i=1

f(xi)
n∏

k=1,k 6=i

(x− xk)
(xi − xk)

+
1

n!
f (n)(c(x))

n∏
k=1

(x− xk). (1)

We will use the following quadrature rule, which is found by integrating Eq. (1). Since the error in Eq. (1)
involves f (n), the quadrature rule will be have degree of precision at least n− 1.∫ 1

−1
f(x) dx =

n∑
i=1

cif(xi), (2)

where ci =

∫ 1

−1

n∏
k=1,k 6=i

(x− xk)
(xi − xk)

dx.

2. Suppose W is a any polynomial with degree k ≤ 2n− 1 (W is not necessarily a Legendre polynomial).

Let’s show the quadrature rule Eq. (2) is exact for f = W .

(a) Dividing W by the nth degree Lengendre polynomial gives

W (x) = Q(x)Pn(x) +R(x), (3)

where both Q and R are polynomials of degree less than n.

(b) Since Q is degree less than n, Q can be written in terms of the Legendre polynomials as:

Q(x) =
n−1∑
i=0

diPi(x)

since the Legendre polynomials {P0(x), . . . , Pn−1(x)} form a basis set for polynomials of degree at most
n− 1.

(c) Using the orthogonality property of the Legendre polynomials, we have∫ 1

−1
Q(x)Pn(x) dx =

n−1∑
i=0

di

∫ 1

−1
Pi(x)Pn(x) dx = 0,

and, upon integrating Eq. (3),∫ 1

−1
W (x) dx = 0 +

∫ 1

−1
R(x) dx =

n∑
i=1

ciR(xi), (4)

where the last equality follows by using the quadrature rule (2) (with degree of precision n− 1) on the
polynomial R(x) which has degree at most n− 1.
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(d) If we choose xi, i = 1, 2, . . . , n, to be the roots of the Lengendre polynomial Pn(x), then Eq. (3) tells
us that

W (xi) = Q(xi)���
�:0

Pn(xi) +R(xi) = R(xi),

and therefore, we have from (4)∫ 1

−1
W (x) dx =

n∑
i=1

ciW (xi),

so the quadrature rule Eq. (2) is exact for the any polynomial W of degree 2n− 1.

This analysis shows us why the nodes xi should be chosen as the roots of the Legendre polynomial, and also gives
us a formula to compute the weights,

ci =

∫ 1

−1

n∏
k=1,k 6=i

(x− xk)
(xi − xk)

dx.

The nice thing is that for a variety of n the nodes and weights have already been calculated, so you don’t have to
work them out yourself!

The amazing connection to orthogonal polynomials is that the nodes are the roots of the orthogonal polynomial
φn(x) we define through the Gram-Schmidt process on interval [a, b] with weight function w(x)!

Notice the text defined Gaussian quadrature only for [a, b] = [−1, 1] and w(x) = 1, but these ideas apply to the
other orthogonal polynomials as well.

Gaussian Quadrature Technique for [a, b] 6= [−1, 1] and w(x) = 1

If the finite interval [a, b] is not [−1, 1], use the linear transformation t = (2x− b− a)/(b− a):∫ b

a

w(x)f(x) dx =

∫ 1

−1
w

(
(b− a)t+ b+ a

2

)
f

(
(b− a)t+ b+ a

2

)
· b− a

2
dt
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To Perform Gausssian Quadrature to Evaluate

∫ b

a

w(x)f(x) dx

Lni =
n∏

k=1,k 6=i

(x− xk)
(xi − xk)

I prefer to think of how it is built, so I get the weight in the correct place.

f(x) =
n∑
i=1

f(xi)Lni,∫ b

a

w(x)f(x) dx =
n∑
i=1

wif(xi),

wi =

∫ b

a

w(x)Lni(x) dx =

∫ b

a

w(x)
n∏

k=1,k 6=i

(x− xk)
(xi − xk)

dx

You will sometimes see tables that reports weights based on the following, so be sure to read your tables closely!

f(x) =
n∑
i=1

f(xi)Lin,∫ b

a

f(x) dx =
n∑
i=1

wif(xi),

wi =

∫ b

a

Lni(x) dx =

∫ b

a

n∏
k=1,k 6=i

(x− xk)
(xi − xk)

dx

You can use the formulas when the appropriate weight function is not present, but the results will not be as good.

Example

∫ ∞
0

e−x cosx dx

Identify the interval [0,∞) and w(x) = e−x as the weight function associated with Laguerre polynomials, Ln(x).
We choose the nodes to be roots of Ln(x) and the weights can either be computed or looked up in a table. The
function is f(x) = cos x.

cos(x) =
5∑
i=1

cos(xi)L5i,∫ ∞
0

e−x cosx dx =
5∑
i=1

wi cos(xi),

wi =

∫ ∞
0

e−x
5∏

k=1,k 6=i

(x− xk)
(xi − xk)

dx

The real power of the method is that the weights/nodes have already been tabulated and you can just plug them
in!


