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1 Linear Least Squares

I will try to be consistent in notation, with

• n being the number of data points, and
• m < n being the number of parameters in a model function.

We are interested in solving an inconsistent set of equations, Ax = b, where

A is an n×m-matrix with components ai,j,
x is an m-vector with m < n and components xi,
b is an n-vector with components bi.

Notice that if m = n this could be solved (providing a solution exists) using Gaussian elimination.

This system is inconsistent (has no solution) since the number of unknown parameters m is less than the number
of equations n and it is unlikely that x can be chosen such that Ax = b.

If m = n, we would want to determine x such that ‖Ax−b‖2 = 0 (where we will work with the Euclidean norm).

Goal: If m < n, we would want to determine x such that ‖Ax− b‖2 is minimized.

Notation: Given A = [ai,j]n×m, we define the transpose of A as AT = [aj,i]m×n.

Useful results from linear algebra:

(A + B)T = AT + BT

(AB)T = BTAT

‖x− y‖2 =
n∑

i=1

(xi − yi)2 = (x− y)T (x− y)

ith row of Ax is
n∑

k=1

ai,kxk

ith row of ATb is
n∑

k=1

ak,ibk

Definition: Two vectors x and y in Rn are orthogonal if xTy = 0

I want to attack this in a different manner than the text, using directional derivatives.

‖Ax− b‖2 = (Ax− b)T (Ax− b)

= ((Ax)T − bT )(Ax− b)

= (xTAT − bT )(Ax− b)

= xTATAx− bTAx− xTATb + bTb

Now, each term in the above is a scalar, since the norm is a scalar. For this to be a minimum, the directional
derivative in any direction u must be zero (from Calculus III).

Du‖Ax− b‖2 =
∂

∂x

(
xTATAx− bTAx− xTATb + bTb

)
· u = 0
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where1

∂α

∂x
=

(
∂α

∂x1
· · · ∂α

∂xj
· · · ∂α

∂xm

)T

Let’s work out each of these derivatives in turn, starting with the easy ones, and looking at the jth row
∂α

∂xj
.

We will use
∂xi
∂xj

= δij.

α = bTb =
n∑

k=1

b2i

∂

∂xj
(α) = 0 −→ ∂

∂x
(bTb) = 0

α = xTATb =
n∑

i=1

xi

n∑
k=1

ak,ibk

∂

∂xj
(α) =

n∑
k=1

ak,jbk =
n∑

k=1

(aj,k)T bk (jth row of ATb) −→ ∂

∂x
(xTATb) = ATb

α = bTAx =
n∑

i=1

bi

n∑
k=1

ai,kxk

∂

∂xj
(α) =

n∑
i=1

biai,j =
n∑

i=1

(aj,i)
T bi (jth row of ATb) −→ ∂

∂x
(bTAx) = ATb

α = xTATAx = (Ax)TAx =

(
n∑

k=1

ai,kxk

)(
n∑

q=1

ai,qxq

)
(product of ith row of Ax)

∂

∂xj
(α) = ai,j

(
n∑

q=1

ai,qxq

)
+

(
n∑

k=1

ai,kxk

)
ai,j (product rule of derivatives)

= 2
n∑

k=1

ai,jai,kxk

= 2
n∑

k=1

(aj,i)
Tai,kxk = 2 (jth row of ATAx) −→ ∂

∂x
(xTATAx) = 2ATAx

Substituting these results back, we find that(
2ATAx− 2ATb

)
· u = 0

1Note this is the denominator layout convention which you can learn more about here:
http://en.wikipedia.org/wiki/Matrix calculus

http://en.wikipedia.org/wiki/Matrix_calculus
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and for this to be true for all directions u, we must have

ATAx = ATb (the normal equations)

The solution x to the normal equations will minimize the value of the residual ‖r‖ = ‖Ax− b‖.

You can solve the normal equations using Guassian elimination, or finding an inverse of a matrix:

x =
(
ATA

)−1
ATb

where
(
ATA

)−1
AT is the pseudoinverse of the matrix A.

Fitting Models to Data

If we are given 1 ≤ i ≤ n data points (xi, yi) and have a linear model we wish to fit

f(x) =
m∑
j=1

cjfj(x)

where m < n then we can use the normal equations to determine the values of the parameters cj that best fit the
data. “Best fit” is taken to mean minimizing the quantity ‖Ac− b‖, where substituting the data points into the
model results in the equations:

f(xi) = yi

which is written as Ac = b.

You should note that this process is actually quite flexible, and you can construct whatever model might best fit
the data, even something like:

f(x, y) = c1 + c2 cosx+ c3 sin y + c4xy

You simply use this equation to create the associated normal equations for the related system Ac = b. The
process is linear in terms of being linear in the parameters ci that are being determined, not in terms of a linear
model function f .

Section 4.2 shows quite a few models, so make sure to read it.

Improvements When Solving The Normal Equations Fail: QR Algorithm

Sometimes solving the normal equations fails, since the Gaussian elimination is not successful. In those cases it
is useful to employ the QR factorization.
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Gram-Schmidt Orthogonalization

I think the text switched the meaning of m and n here, so I will maintain my idea that n is the number of data
points at m < n is the number of parameters (this is how the Mathematica notebook is set up).

Gram-Schmidt orthogonalization is used to take a set of m linearly independent vectors and create a new set of
m vectors that is orthogonalized (each vector is perpendicular to all the other vectors). The algorithm is fairly
straightforward to element, and is discussed in the Mathematica file. The full QR decomposition is

A[n×m] = Q[n×n]R[n×m]

where QT = Q−1 (this is why we need the full decomposition, so the inverse matrix exists since the inverse is
only defined for square matrices).

QTQ = Q−1Q = I

Once we have the full QR decomposition of A we do linear least squares on the m× n system Ac = b for which
we wish ‖Ac− b‖2 to be a minimum in the following manner:

Ac = b

QRc = b

QTQRc = QTb (left multiply by QT )

Rc = QTb (since QTQ = I)

R̂c = d̂

where R̂ is the upper m×m part of R and d̂ is the upper m entries of QTb.

Solve this system for the model parameters c.

2 Nonlinear Regression: Gauss-Newton Method

If the model function does not linearly depend on the parameters, then the previous linear algebra based methods
will not work. We can examine the problem instead from the point of view of minimizing the error by taking the
gradient.

General Set Up

We have n data points (xi, yi), i = 1, 2, . . . , n which we want to fit to a model function which has m adjustable
parameters αj, , j = 1, 2, . . . ,m: f(x) = f(x;α1, . . . , αn).

We actually have a great deal of choice in what type of function we want to minimize. It can be anything that
will measure the relation of the data to the model function. The vector which compares the data to the model
function at each point is given by

y1 − f(x1;α1, . . . , αm)
y2 − f(x2;α1, . . . , αm)

...
yn − f(xn;α1, . . . , αm)


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We can minimize this vector based on a variety of different norms:

l1 norm:
n∑

i=1

|yi − f(xi;α1, . . . , αm)|

lp norm:

(
n∑

i=1

(yi − f(xi;α1, . . . , αm))p

)1/p

l∞ norm: max
i=1,..,n

(yi − f(xi;α1, . . . , αm))

What is typically done is that the l2 norm is used, since it is the Euclidean space norm, and the square of the
norm is minimized:

minimize E(α1, . . . , αm) =
n∑

i=1

(yi − f(xi;α1, . . . , αm))2

Minimizing is just a multivariable unconstrained minimization procedure, which yields the system of equations

0 =
n∑

i=1

(yi − f(xi;α1, . . . , αm))

(
∂

∂αk

f(xi;α1, . . . , αm)

)
, k = 1, . . . ,m (1)

which must be solved for the m unknowns αj. You can solve the equations numerically using Newton’s method
for systems.

Applying this technique to Linear Regression

For now we are interested in fitting to a polynomial of degree m (which means we have m+ 1 parameters).

f(x;α0, . . . , αm) =
m∑
j=0

αjx
j

The system of equations we solve becomes

0 =
n∑

i=1

(
yi −

m∑
j=0

αjx
j
i

)(
∂

∂αk

m∑
j=0

αjx
j
i

)
, k = 0, . . . ,m

0 =
n∑

i=1

(
yi −

m∑
j=0

αjx
j
i

)(
m∑
j=0

δjkx
j
i

)
, k = 0, . . . ,m

0 =
n∑

i=1

(
yi −

m∑
j=0

αjx
j
i

)
xki , k = 0, . . . ,m

0 =
n∑

i=1

(
yix

k
i −

m∑
j=0

αjx
j
ix

k
i

)
, k = 0, . . . ,m

m∑
j=0

αj

n∑
i=1

xj+k
i =

n∑
i=1

yix
k
i , k = 0, . . . ,m

This is a system of m + 1 equations in the m + 1 unknowns αj. It is a linear system, and can be solved using
Cramer’s rule, resulting in the fits you may have seen before (especially for f(x) = α0 + α1x).
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3 Aside: Orthogonal Polynomials and Approximating Functions

Now, we consider having a function f(x) and fitting a curve P (x;α0, . . . , αn) to the function.

We want to minimize the error between the two, and again choose the least squares approximation:

minimize E(α0, . . . , αn) =

∫ b

a

w(t)
(
f(t)− P (t;α0, . . . , αn)

)2
dt

where w(t) is a weight function. The weight function gives greater weight to certain sections of the region that it
is defined on.

Minimizing this equation is just a multivariable unconstrained minimization procedure, which yields

∂E(α0, . . . , αn)

∂αk

= 0 = 2

∫ b

a

w(t)
(
f(t)− P (t;α0, . . . , αn)

) ∂

∂αk

P (t;α0, . . . , αn) dt, k = 0, . . . , n

We choose the function P (t;α0, . . . , αn) =
∑n

j=0 αjφj(t), where φj(t) is a set of linearly independent functions on
[a, b]. Therefore, we get

0 =

∫ b

a

w(t)
(
f(t)−

n∑
j=0

αjφj(t)
) ∂

∂αk

n∑
j=0

αjφj(t) dt, k = 0, . . . , n

0 =

∫ b

a

w(t)
(
f(t)−

n∑
j=0

αjφj(t)
) n∑

j=0

δkjφj(t) dt, k = 0, . . . , n

0 =

∫ b

a

w(t)
(
f(t)−

n∑
j=0

αjφj(t)
)
φk(t) dt, k = 0, . . . , n

∫ b

a

w(t)f(t)φk(t) dt =
n∑

j=0

αj

∫ b

a

w(t)φj(t)φk(t) dt, k = 0, . . . , n

If the functions φk(t) can be chosen so that they are orthogonal,∫ b

a

w(t)φj(t)φk(t) dt =

{
0 j 6= k
βj j = k

then we get∫ b

a

w(t)f(t)φk(t) dt =
n∑

j=0

αj

∫ b

a

w(t)φj(t)φk(t) dt, k = 0, . . . , n

=
n∑

j=0

αjδjkβj, k = 0, . . . , n

= αkβk, k = 0, . . . , n

αk =
1

βk

∫ b

a

w(t)f(t)φk(t) dt

and we have determined the αj which minimize the function.

The Gram-Schmidt process describes how to construct orthogonal polynomials given a specific weight function
w(x).


	Linear Least Squares
	Nonlinear Regression: Gauss-Newton Method
	Aside: Orthogonal Polynomials and Approximating Functions

