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Numerical Differentiation

Among other things, our goal is to show

f ′(x) =
f(x + h)− f(x)

h
+ O(h),

Recall that for the Lagrange interpolating polynomial we proved the following theorem:

Theorem Suppose x1, . . . xn are distinct numbers in the interval [a, b] and f ∈ Cn+1[a, b]. Then, for each x ∈ [a, b]
a number c ∈ (a, b) exists with:

f(x) = Pn−1(x) +
1

n!
f (n)(c)

n∏
i=1

(x− xi),

Pn−1(x) =
n∑

k=1

f(xk)Lnk(x),

Lnk(x) =
n∏

i=1,i 6=k

(x− xi)

(xk − xi)
.

If have n + 1 points x0, . . . xn we can work with:

f(x) = Pn(x) +
1

(n + 1)!
f (n+1)(c)

n∏
i=0

(x− xi), (the c in this equation is partly the problem)

Pn(x) =
n∑

k=0

f(xk)Lnk(x),

Lnk(x) =
n∏

i=0,i 6=k

(x− xi)

(xk − xi)
.

When deriving the point formulas for derivatives is is standard to use points starting at x0, and use equally spaced
points:

x0, x1 = x0 + h, x2 = x0 + 2h, . . . xn = x0 + nh.

The Error Term

• The difficulty in using the above expression for determining a derivative formula is partly the quantity c.

• Ultimately, we are going to be using these formulas to work in intervals [a, b] = [x0, x0 + nh], and so the
interval will depend on the value of h. This has an impact on c.

• The value of c actually depends on the interval we are in, and we should be thinking of c = c(x) ∈ [x0, x0+nh]
since the value of c changes if we evaluate at different values of x.

• Before, everything was simply in the interval [a, b] and that was all we needed, but let’s be a bit more careful
here and see what happens if we keep track of c(x). What is important is that

lim
h→0

f (n+1)(c) = f (n+1)(x0).
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Starting from this expression for f , we can differentiate and then evaluate at x = xj:

f(x) =
n∑

k=0

f(xk)Lnk(x) +
1

(n + 1)!
f (n+1)(c(x))

n∏
i=0

(x− xi),

f ′(x) =
n∑

k=0

f(xk)L′nk(x) +
1

(n + 1)!
f (n+1)(c(x))

d

dx

[
n∏

i=0

(x− xi)

]
+

1

(n + 1)!

d

dx

[
f (n+1)(c(x))

] n∏
i=0

(x− xi),

f ′(xj) =
n∑

k=0

f(xk)L′nk(xj) +
1

(n + 1)!
f (n+1)(c(xj))

d

dx

[
n∏

i=0

(x− xi)

]
x=xj

+ 0. (one of the factors is zero)

Notice that the choice to evaluate at xj was important since it eliminates the need to compute
d

dx

[
f (n+1)(c(x))

]
which would be difficult to do since we don’t really know how c(x) varies as function of x.

We can use implicit differentiation to work out the derivative we still need:
d

dx

[
n∏

i=0

(x− xi)

]
x=xj

:

y =
n∏

i=0

(x− xi),

ln y =
n∑

i=0

ln(x− xi),

y′

y
=

n∑
i=0

1

x− xi

,

y′ =

(
n∏

i=0

(x− xi)

)(
n∑

i=0

1

x− xi

)
,

y′
∣∣∣
x=xj

=

(
n∏

i=0

(xj − xi)

)(
n∑

i=0

1

xj − xi

)
,

= ((xj − x0) · · · (xj − xj−1)(xj − xj)(xj − xj+1) · · · (xj − xn))

×
(

1

(xj − x0)
+ · · ·+ 1

(xj − xj)
+ · · ·+ 1

(xj − xn)

)
,

= (xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn),

=
n∏

i=0,i 6=j

(xj − xi). (all other have an xj − xk in numerator, and are zero)

So we have created an n + 1-point formula to approximate f ′(xj):

f ′(xj) =
n∑

k=0

f(xk)L′nk(xj) +
1

(n + 1)!
f (n+1)(cj)

n∏
i=0,i 6=j

(xj − xi),

where c(xj) = cj ∈ [x0, xn].



Numerical Methods: Numerical Differentiation Page 3

2-point formulas: n = 1

f ′(xj) =
1∑

k=0

f(xk)L′1k(xj) +
1

(2)!
f (2)(cj)

1∏
i=0,i 6=j

(xj − xi).

Choose nodes x0, x1 = x0 + h:

f ′(xj) = f(x0)L
′
10(xj) + f(x1)L

′
11(xj) +

1

2!
f (2)(cj)

1∏
i=0,i 6=j

(xj − xi),

L10(x) =
x− x1

x0 − x1

⇒ L′10(x) =
1

x0 − x1

= −1

h
,

L11(x) =
x− x0

x1 − x0

⇒ L′10(x) =
1

x1 − x0

= +
1

h
.

Choose xj = x0 we get (where x0 ≤ c0 ≤ x1):

f ′(x0) =
f(x1)− f(x0)

h
+

1

2!
f (2)(c0)(x0 − x1),

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f (2)(c0),

Let x = x0: f ′(x) =
f(x + h)− f(x)

h
− h

2
f (2)(c0). (forward-difference formula if h > 0)

Choose xj = x1 we get (where x0 ≤ c1 ≤ x1):

f ′(x1) =
f(x1)− f(x0)

h
+

1

2!
f (2)(c1)(x1 − x0),

f ′(x1) =
f(x1)− f(x1 − h)

h
+

h

2
f (2)(c1), (since x0 = x1 − h )

Let x = x1: f ′(x) =
f(x)− f(x− h)

h
+

h

2
f (2)(c0). (backward-difference formula if h > 0)

We can easily generate more n + 1-point formulas for derivatives using Mathematica to do the algebra for us.

A 3-point formula: n = 2, j = 0, then set x = x0

f ′(x) =
1

2h

(
− 3f(x) + 4f(x + h)− f(x + 2h)

)
+

h2

3
f (3)(c), x ≤ c ≤ x + 2h.

A 3-point formula: n = 2, j = 1, then set x = x0 + h (Eq. 5.7 in the text)

f ′(x) =
1

2h

(
f(x + h)− f(x− h)

)
− h2

6
f (3)(c), x− h ≤ c ≤ x + h.

A 5-point formula: n = 4, j = 2, then set x = x0 − 2h

f ′(x) =
1

12h

(
f(x− 2h)− 8f(x− h) + 8f(x + h)− f(x + 2h)

)
+

h4

30
f (5)(c), x− 2h ≤ c ≤ x + 2h.

This last equation is Eq. 5.16 in the text (with h → 2h) which was arrived at via Richardson’s extrapolation.
The process we have used to derive this expression already contains the fact that it is O(h4).
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Higher Derivative Point Formulas

You can create higher derivative point formulas by starting from the Taylor series and combining formulas in a
manner that eliminates all derivatives except the one you are looking for. We also need to make sure to define c
appropriately along the way. To do that we need a theorem.

Generalized Intermediate Value Theorem Let f be a continuous function on the interval [a, b]. Let x0, . . . , xn

be points in [a, b] and a0, . . . , an > 0. Then there exists a number c between a and b such that

a1f(x1) + · · ·+ anf(xn) = (a1 + · · ·+ an)f(c).

Proof is in the text (it is pretty straightforward, relying of course on the Intermediate Value Theorem).

Example

Start with Taylor Series:

f(x) = f(x0) + f (1)(x0)(x− x0) +
1

2
f (2)(x0)(x− x0)

2 +
1

6
f (3)(x0)(x− x0)

3 +
1

24
f (4)(c)(x− x0)

4,

where c is between x and x0.

Now evaluate at x = x0 + h and x = x0 − h, where h > 0

f(x0 + h) = f(x0) + f (1)(x0)h +
1

2
f (2)(x0)h

2 +
1

6
f (3)(x0)h

3 +
1

24
f (4)(c1)h

4, where c1 ∈ [x0, x0 + h]

f(x0 − h) = f(x0)− f (1)(x0)h +
1

2
f (2)(x0)h

2 − 1

6
f (3)(x0)h

3 +
1

24
f (4)(c2)h

4, where c2 ∈ [x0 − h, x0]

and adding the above equations and solving for f (2)(x0) yields

f(x0 + h) + f(x0 − h) = 2f(x0) + f (2)(x0)h
2 +

h4

24

(
f (4)(c1) + f (4)(c2)

)
,

f (2)(x0) =
1

h2

(
f(x0 − h)− 2f(x0) + f(x0 + h)

)
− h2

24

(
f (4)(c1) + f (4)(c2)

)
.

Using the Generalized Intermediate Value Theorem, we have

f (4)(c1) + f (4)(c2), = 2f (4)(c), where c ∈ [x0 − h, x0 + h].

So we have constructed a 3-point second derivative formula (Eq. 5.8 in the text):

f (2)(x0) =
1

h2

(
f(x0 − h)− 2f(x0) + f(x0 + h)

)
− h2f

(4)(c)

12
, where c ∈ [x0 − h, x0 + h]

f (2)(x0) =
1

h2

(
f(x0 − h)− 2f(x0) + f(x0 + h)

)
+ O(h2).

Note: You can use n + 1-point formulas on given functions f(x) or data sets (xi, yi).

If you use them on data sets you may have to use different formulas on the endpoints of the region.


