Numerical Differentiation

Among other things, our goal is to show

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+O(h),
$$

Recall that for the Lagrange interpolating polynomial we proved the following theorem:
Theorem Suppose $x_{1}, \ldots x_{n}$ are distinct numbers in the interval $[a, b]$ and $f \in C^{n+1}[a, b]$. Then, for each $x \in[a, b]$ a number $c \in(a, b)$ exists with:

$$
\begin{aligned}
f(x) & =P_{n-1}(x)+\frac{1}{n!} f^{(n)}(c) \prod_{i=1}^{n}\left(x-x_{i}\right), \\
P_{n-1}(x) & =\sum_{k=1}^{n} f\left(x_{k}\right) L_{n k}(x), \\
L_{n k}(x) & =\prod_{i=1, i \neq k}^{n} \frac{\left(x-x_{i}\right)}{\left(x_{k}-x_{i}\right)} .
\end{aligned}
$$

If have $n+1$ points $x_{0}, \ldots x_{n}$ we can work with:

$$
\begin{aligned}
f(x) & =P_{n}(x)+\frac{1}{(n+1)!} f^{(n+1)}(c) \prod_{i=0}^{n}\left(x-x_{i}\right), \quad \text { (the } c \text { in this equation is partly the problem) } \\
P_{n}(x) & =\sum_{k=0}^{n} f\left(x_{k}\right) L_{n k}(x), \\
L_{n k}(x) & =\prod_{i=0, i \neq k}^{n} \frac{\left(x-x_{i}\right)}{\left(x_{k}-x_{i}\right)} .
\end{aligned}
$$

When deriving the point formulas for derivatives is is standard to use points starting at x_{0}, and use equally spaced points:

$$
x_{0}, \quad x_{1}=x_{0}+h, \quad x_{2}=x_{0}+2 h, \quad \ldots \quad x_{n}=x_{0}+n h .
$$

The Error Term

- The difficulty in using the above expression for determining a derivative formula is partly the quantity c.
- Ultimately, we are going to be using these formulas to work in intervals $[a, b]=\left[x_{0}, x_{0}+n h\right]$, and so the interval will depend on the value of h. This has an impact on c.
- The value of c actually depends on the interval we are in, and we should be thinking of $c=c(x) \in\left[x_{0}, x_{0}+n h\right]$ since the value of c changes if we evaluate at different values of x.
- Before, everything was simply in the interval $[a, b]$ and that was all we needed, but let's be a bit more careful here and see what happens if we keep track of $c(x)$. What is important is that

$$
\lim _{h \rightarrow 0} f^{(n+1)}(c)=f^{(n+1)}\left(x_{0}\right)
$$

Starting from this expression for f, we can differentiate and then evaluate at $x=x_{j}$:

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{n} f\left(x_{k}\right) L_{n k}(x)+\frac{1}{(n+1)!} f^{(n+1)}(c(x)) \prod_{i=0}^{n}\left(x-x_{i}\right), \\
f^{\prime}(x) & =\sum_{k=0}^{n} f\left(x_{k}\right) L_{n k}^{\prime}(x)+\frac{1}{(n+1)!} f^{(n+1)}(c(x)) \frac{d}{d x}\left[\prod_{i=0}^{n}\left(x-x_{i}\right)\right]+\frac{1}{(n+1)!} \frac{d}{d x}\left[f^{(n+1)}(c(x))\right] \prod_{i=0}^{n}\left(x-x_{i}\right), \\
f^{\prime}\left(x_{j}\right) & =\sum_{k=0}^{n} f\left(x_{k}\right) L_{n k}^{\prime}\left(x_{j}\right)+\frac{1}{(n+1)!} f^{(n+1)}\left(c\left(x_{j}\right)\right) \frac{d}{d x}\left[\prod_{i=0}^{n}\left(x-x_{i}\right)\right]_{x=x_{j}} \quad+0 . \text { (one of the factors is zero) }
\end{aligned}
$$

Notice that the choice to evaluate at x_{j} was important since it eliminates the need to compute $\frac{d}{d x}\left[f^{(n+1)}(c(x))\right]$ which would be difficult to do since we don't really know how $c(x)$ varies as function of x.
We can use implicit differentiation to work out the derivative we still need: $\frac{d}{d x}\left[\prod_{i=0}^{n}\left(x-x_{i}\right)\right]_{x=x_{j}}$:

$$
\begin{aligned}
& y=\prod_{i=0}^{n}\left(x-x_{i}\right), \\
& \ln y=\sum_{i=0}^{n} \ln \left(x-x_{i}\right), \\
& \frac{y^{\prime}}{y}= \sum_{i=0}^{n} \frac{1}{x-x_{i}}, \\
& y^{\prime}=\left(\prod_{i=0}^{n}\left(x-x_{i}\right)\right)\left(\sum_{i=0}^{n} \frac{1}{x-x_{i}}\right), \\
&=\left(\prod_{i=0}^{n}\left(x_{j}-x_{i}\right)\right)\left(\sum_{i=0}^{n} \frac{1}{x_{j}-x_{i}}\right), \\
&=\left(\left(x_{j}-x_{0}\right) \cdots\left(x_{j}-x_{j-1}\right)\left(x_{j}-x_{j}\right)\left(x_{j}-x_{j+1}\right) \cdots\left(x_{j}-x_{n}\right)\right) \\
&\left.y_{x=x_{j}}\right|^{1}\left(\frac{1}{\left(x_{j}-x_{0}\right)}+\cdots+\frac{1}{\left(x_{j}-x_{j}\right)}+\cdots+\frac{1}{\left(x_{j}-x_{n}\right)}\right), \\
&=\left(x_{j}-x_{0}\right) \cdots\left(x_{j}-x_{j-1}\right)\left(x_{j}-x_{j+1}\right) \cdots\left(x_{j}-x_{n}\right), \\
&= \prod_{i=0, i \neq j}^{n}\left(x_{j}-x_{i}\right) . \quad\left(\text { all other have an } x_{j}-x_{k} \text { in numerator, and are zero }\right)
\end{aligned}
$$

So we have created an $n+1$-point formula to approximate $f^{\prime}\left(x_{j}\right)$:

$$
\begin{aligned}
f^{\prime}\left(x_{j}\right) & =\sum_{k=0}^{n} f\left(x_{k}\right) L_{n k}^{\prime}\left(x_{j}\right)+\frac{1}{(n+1)!} f^{(n+1)}\left(c_{j}\right) \prod_{i=0, i \neq j}^{n}\left(x_{j}-x_{i}\right), \\
& \text { where } c\left(x_{j}\right)=c_{j} \in\left[x_{0}, x_{n}\right] .
\end{aligned}
$$

2-point formulas: $n=1$

$$
f^{\prime}\left(x_{j}\right)=\sum_{k=0}^{1} f\left(x_{k}\right) L_{1 k}^{\prime}\left(x_{j}\right)+\frac{1}{(2)!} f^{(2)}\left(c_{j}\right) \prod_{i=0, i \neq j}^{1}\left(x_{j}-x_{i}\right) .
$$

Choose nodes $x_{0}, x_{1}=x_{0}+h$:

$$
\begin{aligned}
& f^{\prime}\left(x_{j}\right)=f\left(x_{0}\right) L_{10}^{\prime}\left(x_{j}\right)+f\left(x_{1}\right) L_{11}^{\prime}\left(x_{j}\right)+\frac{1}{2!} f^{(2)}\left(c_{j}\right) \prod_{i=0, i \neq j}^{1}\left(x_{j}-x_{i}\right) \\
& L_{10}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} \quad \Rightarrow \quad L_{10}^{\prime}(x)=\frac{1}{x_{0}-x_{1}}=-\frac{1}{h} \\
& L_{11}(x)=\frac{x-x_{0}}{x_{1}-x_{0}} \quad \Rightarrow \quad L_{10}^{\prime}(x)=\frac{1}{x_{1}-x_{0}}=+\frac{1}{h}
\end{aligned}
$$

Choose $x_{j}=x_{0}$ we get (where $x_{0} \leq c_{0} \leq x_{1}$):

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}+\frac{1}{2!} f^{(2)}\left(c_{0}\right)\left(x_{0}-x_{1}\right), \\
f^{\prime}\left(x_{0}\right) & =\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-\frac{h}{2} f^{(2)}\left(c_{0}\right)
\end{aligned}
$$

Let $x=x_{0}: f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\frac{h}{2} f^{(2)}\left(c_{0}\right) . \quad($ forward-difference formula if $h>0)$
Choose $x_{j}=x_{1}$ we get (where $x_{0} \leq c_{1} \leq x_{1}$):

$$
\begin{array}{ll}
f^{\prime}\left(x_{1}\right)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{h}+\frac{1}{2!} f^{(2)}\left(c_{1}\right)\left(x_{1}-x_{0}\right), \\
\left.f^{\prime}\left(x_{1}\right)=\frac{f\left(x_{1}\right)-f\left(x_{1}-h\right)}{h}+\frac{h}{2} f^{(2)}\left(c_{1}\right), \quad\left(\text { since } x_{0}=x_{1}-h\right)\right)
\end{array}
$$

Let $x=x_{1}: f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+\frac{h}{2} f^{(2)}\left(c_{0}\right) . \quad$ (backward-difference formula if $h>0$)
We can easily generate more $n+1$-point formulas for derivatives using Mathematica to do the algebra for us. A 3-point formula: $n=2, j=0$, then set $x=x_{0}$

$$
f^{\prime}(x)=\frac{1}{2 h}(-3 f(x)+4 f(x+h)-f(x+2 h))+\frac{h^{2}}{3} f^{(3)}(c), \quad x \leq c \leq x+2 h .
$$

A 3-point formula: $n=2, j=1$, then set $x=x_{0}+h$ (Eq. 5.7 in the text)

$$
f^{\prime}(x)=\frac{1}{2 h}(f(x+h)-f(x-h))-\frac{h^{2}}{6} f^{(3)}(c), \quad x-h \leq c \leq x+h
$$

A 5-point formula: $n=4, j=2$, then set $x=x_{0}-2 h$

$$
f^{\prime}(x)=\frac{1}{12 h}(f(x-2 h)-8 f(x-h)+8 f(x+h)-f(x+2 h))+\frac{h^{4}}{30} f^{(5)}(c), \quad x-2 h \leq c \leq x+2 h
$$

This last equation is Eq. 5.16 in the text (with $h \rightarrow 2 h$) which was arrived at via Richardson's extrapolation. The process we have used to derive this expression already contains the fact that it is $O\left(h^{4}\right)$.

Higher Derivative Point Formulas

You can create higher derivative point formulas by starting from the Taylor series and combining formulas in a manner that eliminates all derivatives except the one you are looking for. We also need to make sure to define c appropriately along the way. To do that we need a theorem.

Generalized Intermediate Value Theorem Let f be a continuous function on the interval $[a, b]$. Let x_{0}, \ldots, x_{n} be points in $[a, b]$ and $a_{0}, \ldots, a_{n}>0$. Then there exists a number c between a and b such that

$$
a_{1} f\left(x_{1}\right)+\cdots+a_{n} f\left(x_{n}\right)=\left(a_{1}+\cdots+a_{n}\right) f(c)
$$

Proof is in the text (it is pretty straightforward, relying of course on the Intermediate Value Theorem).

Example

Start with Taylor Series:

$$
f(x)=f\left(x_{0}\right)+f^{(1)}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{(2)}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{6} f^{(3)}\left(x_{0}\right)\left(x-x_{0}\right)^{3}+\frac{1}{24} f^{(4)}(c)\left(x-x_{0}\right)^{4},
$$

where c is between x and x_{0}.
Now evaluate at $x=x_{0}+h$ and $x=x_{0}-h$, where $h>0$

$$
\begin{array}{ll}
f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{(1)}\left(x_{0}\right) h+\frac{1}{2} f^{(2)}\left(x_{0}\right) h^{2}+\frac{1}{6} f^{(3)}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(c_{1}\right) h^{4}, & \\
\text { where } c_{1} \in\left[x_{0}, x_{0}+h\right] \\
f\left(x_{0}-h\right)=f\left(x_{0}\right)-f^{(1)}\left(x_{0}\right) h+\frac{1}{2} f^{(2)}\left(x_{0}\right) h^{2}-\frac{1}{6} f^{(3)}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(c_{2}\right) h^{4}, & \\
\text { where } c_{2} \in\left[x_{0}-h, x_{0}\right]
\end{array}
$$

and adding the above equations and solving for $f^{(2)}\left(x_{0}\right)$ yields

$$
\begin{aligned}
f\left(x_{0}+h\right)+f\left(x_{0}-h\right) & =2 f\left(x_{0}\right)+f^{(2)}\left(x_{0}\right) h^{2}+\frac{h^{4}}{24}\left(f^{(4)}\left(c_{1}\right)+f^{(4)}\left(c_{2}\right)\right), \\
f^{(2)}\left(x_{0}\right) & =\frac{1}{h^{2}}\left(f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right)-\frac{h^{2}}{24}\left(f^{(4)}\left(c_{1}\right)+f^{(4)}\left(c_{2}\right)\right) .
\end{aligned}
$$

Using the Generalized Intermediate Value Theorem, we have

$$
f^{(4)}\left(c_{1}\right)+f^{(4)}\left(c_{2}\right),=2 f^{(4)}(c), \quad \text { where } c \in\left[x_{0}-h, x_{0}+h\right] .
$$

So we have constructed a 3-point second derivative formula (Eq. 5.8 in the text):

$$
\begin{array}{ll}
f^{(2)}\left(x_{0}\right)=\frac{1}{h^{2}}\left(f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right)-h^{2} \frac{f^{(4)}(c)}{12}, & \text { where } c \in\left[x_{0}-h, x_{0}+h\right] \\
f^{(2)}\left(x_{0}\right)=\frac{1}{h^{2}}\left(f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right)+O\left(h^{2}\right) . &
\end{array}
$$

Note: You can use $n+1$-point formulas on given functions $f(x)$ or data sets $\left(x_{i}, y_{i}\right)$.
If you use them on data sets you may have to use different formulas on the endpoints of the region.

