Runge-Kutta Methods

Euler's method:

$$
\begin{array}{rlrl}
t_{i+1} & =t_{i} \\
y_{i+1} & =y_{i}+h y^{\prime}\left(t_{i}\right)+\frac{h^{2}}{2} y^{(2)}\left(c_{i}\right) \\
& =y_{i}+h f\left(t_{i}, y_{i}\right)+\frac{h^{2}}{2} y^{(2)}\left(c_{i}\right), & & \text { (exact solution) } \\
w_{i+1} & =w_{i}+h f\left(t_{i}, w_{i}\right) & & \text { (approximate solution) }
\end{array}
$$

Taylor's Method of Order 2:

$$
\begin{array}{rlrl}
t_{i+1} & =t_{i} \\
y_{i+1} & =y_{i}+h y^{\prime}\left(t_{i}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{i}\right)+\frac{h^{3}}{6} y^{(3)}\left(c_{i}\right) \\
& =y_{i}+h f\left(t_{i}, y_{i}\right)+\frac{h^{2}}{2}\left(\frac{\partial}{\partial t} f\left(t_{i}, y_{i}\right)+f\left(t_{i}, y_{i}\right) \frac{\partial}{\partial y} f\left(t_{i}, y_{i}\right)\right)+\frac{h^{3}}{6} y^{(3)}\left(c_{i}\right), & & \text { (exact solution) } \tag{1}\\
w_{i+1} & =w_{i}+h f\left(t_{i}, w_{i}\right)+\frac{h^{2}}{2}\left(\frac{\partial}{\partial t} f\left(t_{i}, w_{i}\right)+f\left(t_{i}, w_{i}\right) \frac{\partial}{\partial y} f\left(t_{i}, w_{i}\right)\right) . & \text { (approximate solution) }
\end{array}
$$

Taylor's method of Order 2 has local truncation error $O\left(h^{2}\right)$, which makes it preferable to Euler's method, but requires the computation of the derivatives of f, which make it undesirable.

1. Runge-Kutta methods use the higher order local truncation error of the Taylor methods while eliminating the computation and evaluation of the derivatives of f.
2. As such, Runge-Kutta methods are very popular numerical ODE solvers.
3. A Runge-Kutta method of Order n will have local truncation error of $O\left(h^{n}\right)$.

Taylor's Theorem for two variables Suppose that $f(t, y)$ and all its partial derivatives of order less than or equal to $n+1$ are continuous on $D=\{(t, y) \mid a \leq t \leq b,-\infty<y<\infty\}$. Let $\left(t_{0}, y_{0}\right) \in D$. For every $(t, y) \in D$, there exists c between t and t_{0} and η between y and y_{0} such that

$$
\begin{aligned}
f(t, y) & =P_{n}(t, y)+R_{n}(t, y), \\
P_{n}(t, y) & =f\left(t_{0}, y_{0}\right)+\left[\left(t-t_{0}\right) \frac{\partial f}{\partial t}\left(t_{0}, y_{0}\right)+\left(y-y_{0}\right) \frac{\partial f}{\partial y}\left(t_{0}, y_{0}\right)\right] \\
& +\left[\frac{1}{2}\left(t-t_{0}\right)^{2} \frac{\partial^{2} f}{\partial t^{2}}\left(t_{0}, y_{0}\right)+\left(t-t_{0}\right)\left(y-y_{0}\right) \frac{\partial^{2} f}{\partial t \partial y}\left(t_{0}, y_{0}\right)+\frac{1}{2}\left(y-y_{0}\right)^{2} \frac{\partial^{2} f}{\partial y^{2}}\left(t_{0}, y_{0}\right)\right] \\
& +\cdots+\left[\frac{1}{n!} \sum_{j=0}^{n}\binom{n}{j}\left(t-t_{0}\right)^{n-j}\left(y-y_{0}\right)^{j} \frac{\partial^{n} f}{\partial t^{n-j} \partial y^{j}}\left(t_{0}, y_{0}\right)\right] \\
R_{n}(t, y) & =\frac{1}{(n+1)!} \sum_{j=0}^{n+1}\binom{n+1}{j}\left(t-t_{0}\right)^{n+1-j}\left(y-y_{0}\right)^{j} \frac{\partial^{n+1} f}{\partial t^{n+1-j} \partial y^{j}}(c, \eta) .
\end{aligned}
$$

Runge-Kutta Methods of Order 2

For Taylor's method of Order 2, we wish to replace the derivative $y^{\prime \prime}\left(t_{i}\right)$, which we obtain using the DE as $y^{\prime \prime}(t)=\frac{d}{d t} f(t, y)$. Here is how it is done-the manipulations are straightforward, albeit a bit tedious.
Expanding f in a Taylor series about $\left(t_{i}, y_{i}\right)$ then evaluating at $t=t_{i}+\alpha_{1}$ and $y=y_{i}+\beta_{1}$, we have:

$$
\begin{align*}
f\left(t_{i}+\alpha_{1}, y_{i}+\beta_{1}\right) & =f\left(t_{i}, y_{i}\right)+\left[\alpha_{1} \frac{\partial f}{\partial t}\left(t_{i}, y_{i}\right)+\beta_{1} \frac{\partial f}{\partial y}\left(t_{i}, y_{i}\right)\right]+R_{1}\left(t_{i}+\alpha_{1}, y_{i}+\beta_{1}\right) \tag{2}\\
R_{1}\left(t_{i}+\alpha_{1}, y_{i}+\beta_{1}\right) & =\left[\frac{\alpha_{1}^{2}}{2} \frac{\partial^{2} f}{\partial t^{2}}(c, \eta)+\alpha_{1} \beta_{1} \frac{\partial^{2} f}{\partial t \partial y}(c, \eta)+\frac{\beta_{1}^{2}}{2} \frac{\partial^{2} f}{\partial y^{2}}(c, \eta)\right]
\end{align*}
$$

for some c between t_{i} and $t_{i}+\alpha_{1}$ and η between y_{i} and $y_{i}+\beta_{1}$.
Now, multiply Eq. (2) by the parameter a_{1} (note this is a_{1} not α_{1}):

$$
\begin{equation*}
a_{1} f\left(t_{i}+\alpha_{1}, y_{i}+\beta_{1}\right)=a_{1} f\left(t_{i}, y_{i}\right)+\left[a_{1} \alpha_{1} \frac{\partial f}{\partial t}\left(t_{i}, y_{i}\right)+a_{1} \beta_{1} \frac{\partial f}{\partial y}\left(t_{i}, y_{i}\right)\right]+a_{1} R_{1}\left(t_{i}+\alpha_{1}, y_{i}+\beta_{1}\right) \tag{3}
\end{equation*}
$$

We want to use Eq. (3) to replace f in Eq. (1). Matching the coefficients of f and its derivatives, we get the following equations (neglecting the error term for the moment):

$$
\begin{aligned}
a_{1} & =h, \\
a_{1} \alpha_{1} & =h^{2} / 2, \\
a_{1} \beta_{1} & =h^{2} f\left(t_{i}, y_{i}\right) / 2,
\end{aligned}
$$

from which we can determine

$$
\begin{aligned}
a_{1} & =h \\
\alpha_{1} & =h / 2 \\
\beta_{1} & =h f\left(t_{i}, y_{i}\right) / 2
\end{aligned}
$$

With these substitutions, we can say from (3)

$$
h f\left(t_{i}, y_{i}\right)+\frac{h^{2}}{2}\left(\frac{\partial}{\partial t} f\left(t_{i}, y_{i}\right)+f\left(t_{i}, y_{i}\right) \frac{\partial}{\partial y} f\left(t_{i}, y_{i}\right)\right)=h f\left(t_{i}+\frac{h}{2}, y_{i}+\frac{h}{2} f\left(t_{i}, y_{i}\right)\right)
$$

and we have a new method (the Midpoint Method):

$$
\begin{aligned}
w_{0} & =y_{0} \\
w_{i+1} & =w_{i}+h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{h}{2} f\left(t_{i}, w_{i}\right)\right),
\end{aligned}
$$

with error given by

$$
R_{1}\left(t_{i}+\alpha_{1}, y_{i}+\beta_{1}\right)=\frac{h^{2}}{8} \frac{\partial^{2} f}{\partial t^{2}}(c, \eta)+\frac{h^{2}}{4} \frac{\partial^{2} f}{\partial t \partial y}(c, \eta)+\frac{h^{2}}{2} \frac{\partial^{2} f}{\partial y^{2}}(c, \eta)
$$

If all the second order partial derivatives are bounded, then R_{1} will be $O\left(h^{2}\right)$, which makes the Midpoint method a Runge-Kutta Method of Order 2.

Any method that replaces the derivatives if f with functional evaluations of f is considered a Runge-Kutta method. We can make different substitutions and choices and arrive at different Runge-Kutta methods.

Other Runge-Kutta Order 2 Methods

Let's approach this in a slightly different manner than before. We can assume the approximation to f terms in Eq. (1) has a certain form, with certain unspecified parameters, and then the goal will be to determine the parameters.

For example, we can choose to match with the approximation:

$$
\begin{aligned}
y_{i}+h f\left(t_{i}, y_{i}\right)+\frac{h^{2}}{2}\left(\frac{\partial}{\partial t} f\left(t_{i}, y_{i}\right)+f\left(t_{i}, y_{i}\right) \frac{\partial}{\partial y} f\left(t_{i}, y_{i}\right)\right) & =y_{i}+a_{1} k_{1}+a_{2} k_{2} \\
k_{1} & =h f\left(t_{i}, y_{i}\right) \\
k_{2} & =h f\left(t_{i}+h \alpha_{2}, y_{i}+k_{1} \beta_{2}\right)
\end{aligned}
$$

where the parameters $a_{1}, a_{2}, \alpha_{2}, \beta_{2}$ need to be determined, and the k_{1}, k_{2} were introduced to assist with the nesting in the second variable.
We proceed by expanding everything in powers of h, and then forcing coefficients of powers of h to be equal, this assuring the approximation is correct to $O\left(h^{2}\right)$. Since we have four unknowns, and are expanding to $O\left(h^{2}\right)$, we get three equations. The details of this process are in Mathematica, and the final result is:

$$
\begin{aligned}
a_{1} & =1-a_{2}, \\
\alpha_{2} & =\frac{1}{2 a_{2}} \\
\beta_{2} & =\frac{1}{2 a_{2}}
\end{aligned}
$$

If we choose $a_{2}=1$ we get $a_{1}=0, \alpha_{2}=\beta_{2}=1 / 2$ (Midpoint Method):

$$
\begin{aligned}
t_{i+1} & =t_{i}+h \\
k_{2} & =h f\left(t_{i}+\frac{1}{2} h, w_{i}+\frac{1}{2} k_{1}\right), \\
w_{i+1} & =w_{i}+k_{2}
\end{aligned}
$$

If we choose $a_{2}=1 / 2$ we get $a_{1}=a_{2}=1 / 2, \alpha_{2}=\beta_{2}=1$ (Explicit Trapezoidal Method):

$$
\begin{aligned}
t_{i+1} & =t_{i}+h, \\
k_{1} & =h f\left(t_{i}, w_{i}\right), \\
k_{2} & =h f\left(t_{i}+h, w_{i}+k_{1}\right), \\
w_{i+1} & =w_{i}+\frac{1}{2}\left(k_{1}+k_{2}\right) .
\end{aligned}
$$

If we choose $a_{2}=3 / 4$ we get $a_{1}=1 / 4, \alpha_{2}=\beta_{2}=2 / 3$ (Heun's Method):

$$
\begin{aligned}
t_{i+1} & =t_{i}+h, \\
k_{1} & =h f\left(t_{i}, w_{i}\right) \\
k_{2} & =h f\left(t_{i}+\frac{2}{3} h, w_{i}+\frac{2}{3} k_{1}\right), \\
w_{i+1} & =w_{i}+\frac{1}{4}\left(k_{1}+3 k_{2}\right) .
\end{aligned}
$$

Runge-Kutta Order 4 (RK4)

The most commonly used Runge-Kutta method is of order 4. It can be derived in a manner similar to what we did for order 3, only the algebra becomes extremely tedious.
The RK4 method is easy to program, is a one-step method (so only needs an initial condition to get started), and is considerably more accurate than the order 2 methods.

$$
\begin{aligned}
t_{i+1} & =t_{i}+h, \\
k_{1} & =h f\left(t_{i}, w_{i}\right), \\
k_{2} & =h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{1}{2} k_{1}\right), \\
k_{3} & =h f\left(t_{i}+\frac{h}{2}, w_{i}+\frac{1}{2} k_{2}\right), \\
k_{4} & =h f\left(t_{i}, w_{i}+k_{3}\right), \\
w_{i+1} & =w_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) .
\end{aligned}
$$

