
Numerical Methods
Runge-Kutta Methods Page 1

Runge-Kutta Methods

Euler’s method:

ti+1 = ti,

yi+1 = yi + hy′(ti) +
h2

2
y(2)(ci),

= yi + hf(ti, yi) +
h2

2
y(2)(ci), (exact solution)

wi+1 = wi + hf(ti, wi). (approximate solution)

Taylor’s Method of Order 2:

ti+1 = ti,

yi+1 = yi + hy′(ti) +
h2

2
y′′(ti) +

h3

6
y(3)(ci),

= yi + hf(ti, yi) +
h2

2

(
∂

∂t
f(ti, yi) + f(ti, yi)

∂

∂y
f(ti, yi)

)
+
h3

6
y(3)(ci), (exact solution) (1)

wi+1 = wi + hf(ti, wi) +
h2

2

(
∂

∂t
f(ti, wi) + f(ti, wi)

∂

∂y
f(ti, wi)

)
. (approximate solution)

Taylor’s method of Order 2 has local truncation error O(h2), which makes it preferable to Euler’s method, but
requires the computation of the derivatives of f , which make it undesirable.

1. Runge-Kutta methods use the higher order local truncation error of the Taylor methods while eliminating
the computation and evaluation of the derivatives of f .

2. As such, Runge-Kutta methods are very popular numerical ODE solvers.
3. A Runge-Kutta method of Order n will have local truncation error of O(hn).

Taylor’s Theorem for two variables Suppose that f(t, y) and all its partial derivatives of order less than or
equal to n + 1 are continuous on D = {(t, y)

∣∣ a ≤ t ≤ b,−∞ < y < ∞}. Let (t0, y0) ∈ D. For every (t, y) ∈ D,
there exists c between t and t0 and η between y and y0 such that

f(t, y) = Pn(t, y) +Rn(t, y),

Pn(t, y) = f(t0, y0) +

[
(t− t0)

∂f

∂t
(t0, y0) + (y − y0)

∂f

∂y
(t0, y0)

]
+

[
1

2
(t− t0)2

∂2f

∂t2
(t0, y0) + (t− t0)(y − y0)

∂2f

∂t∂y
(t0, y0) +

1

2
(y − y0)2

∂2f

∂y2
(t0, y0)

]
+ · · ·+

[
1

n!

n∑
j=0

(
n

j

)
(t− t0)n−j(y − y0)j

∂nf

∂tn−j∂yj
(t0, y0)

]
,

Rn(t, y) =
1

(n+ 1)!

n+1∑
j=0

(
n+ 1

j

)
(t− t0)n+1−j(y − y0)j

∂n+1f

∂tn+1−j∂yj
(c, η).



Numerical Methods
Runge-Kutta Methods Page 2

Runge-Kutta Methods of Order 2

For Taylor’s method of Order 2, we wish to replace the derivative y′′(ti), which we obtain using the DE as
y′′(t) = d

dt
f(t, y). Here is how it is done–the manipulations are straightforward, albeit a bit tedious.

Expanding f in a Taylor series about (ti, yi) then evaluating at t = ti + α1 and y = yi + β1, we have:

f(ti + α1, yi + β1) = f(ti, yi) +

[
α1
∂f

∂t
(ti, yi) + β1

∂f

∂y
(ti, yi)

]
+R1(ti + α1, yi + β1), (2)

R1(ti + α1, yi + β1) =

[
α2
1

2

∂2f

∂t2
(c, η) + α1β1

∂2f

∂t∂y
(c, η) +

β2
1

2

∂2f

∂y2
(c, η)

]
,

for some c between ti and ti + α1 and η between yi and yi + β1.

Now, multiply Eq. (2) by the parameter a1 (note this is a1 not α1):

a1f(ti + α1, yi + β1) = a1f(ti, yi) +

[
a1α1

∂f

∂t
(ti, yi) + a1β1

∂f

∂y
(ti, yi)

]
+ a1R1(ti + α1, yi + β1). (3)

We want to use Eq. (3) to replace f in Eq. (1). Matching the coefficients of f and its derivatives, we get the
following equations (neglecting the error term for the moment):

a1 = h,

a1α1 = h2/2,

a1β1 = h2f(ti, yi)/2,

from which we can determine

a1 = h,

α1 = h/2,

β1 = hf(ti, yi)/2.

With these substitutions, we can say from (3)

hf(ti, yi) +
h2

2

(
∂

∂t
f(ti, yi) + f(ti, yi)

∂

∂y
f(ti, yi)

)
= hf

(
ti +

h

2
, yi +

h

2
f(ti, yi)

)
,

and we have a new method (the Midpoint Method):

w0 = y0,

wi+1 = wi + hf

(
ti +

h

2
, wi +

h

2
f(ti, wi)

)
,

with error given by

R1(ti + α1, yi + β1) =
h2

8

∂2f

∂t2
(c, η) +

h2

4

∂2f

∂t∂y
(c, η) +

h2

2

∂2f

∂y2
(c, η).

If all the second order partial derivatives are bounded, then R1 will be O(h2), which makes the Midpoint method
a Runge-Kutta Method of Order 2.

Any method that replaces the derivatives if f with functional evaluations of f is considered a Runge-Kutta
method. We can make different substitutions and choices and arrive at different Runge-Kutta methods.



Numerical Methods
Runge-Kutta Methods Page 3

Other Runge-Kutta Order 2 Methods

Let’s approach this in a slightly different manner than before. We can assume the approximation to f terms
in Eq. (1) has a certain form, with certain unspecified parameters, and then the goal will be to determine the
parameters.

For example, we can choose to match with the approximation:

yi + hf(ti, yi) +
h2

2

(
∂

∂t
f(ti, yi) + f(ti, yi)

∂

∂y
f(ti, yi)

)
= yi + a1k1 + a2k2,

k1 = hf(ti, yi),

k2 = hf(ti + hα2, yi + k1β2),

where the parameters a1, a2, α2, β2 need to be determined, and the k1, k2 were introduced to assist with the nesting
in the second variable.

We proceed by expanding everything in powers of h, and then forcing coefficients of powers of h to be equal, this
assuring the approximation is correct to O(h2). Since we have four unknowns, and are expanding to O(h2), we
get three equations. The details of this process are in Mathematica, and the final result is:

a1 = 1− a2,

α2 =
1

2a2
,

β2 =
1

2a2
.

If we choose a2 = 1 we get a1 = 0, α2 = β2 = 1/2 (Midpoint Method):

ti+1 = ti + h,

k2 = hf(ti +
1

2
h,wi +

1

2
k1),

wi+1 = wi + k2.

If we choose a2 = 1/2 we get a1 = a2 = 1/2, α2 = β2 = 1 (Explicit Trapezoidal Method):

ti+1 = ti + h,

k1 = hf(ti, wi),

k2 = hf(ti + h,wi + k1),

wi+1 = wi +
1

2
(k1 + k2).

If we choose a2 = 3/4 we get a1 = 1/4, α2 = β2 = 2/3 (Heun’s Method):

ti+1 = ti + h,

k1 = hf(ti, wi),

k2 = hf(ti +
2

3
h,wi +

2

3
k1),

wi+1 = wi +
1

4
(k1 + 3k2).



Numerical Methods
Runge-Kutta Methods Page 4

Runge-Kutta Order 4 (RK4)

The most commonly used Runge-Kutta method is of order 4. It can be derived in a manner similar to what we
did for order 3, only the algebra becomes extremely tedious.

The RK4 method is easy to program, is a one-step method (so only needs an initial condition to get started), and
is considerably more accurate than the order 2 methods.

ti+1 = ti + h,

k1 = hf(ti, wi),

k2 = hf(ti +
h

2
, wi +

1

2
k1),

k3 = hf(ti +
h

2
, wi +

1

2
k2),

k4 = hf(ti, wi + k3),

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4).


