

Inverse Function

Square Root Function

Exponential Function

Natural Logarithmic Function

Sine Function

Cosine Function

Absolute Value Function

Greatest Integer Function

Logistic Function

Concepts: Familiarity with graphs of the 12 Basic Functions, and determining the properties of these functions from their graphs.

Questions: For the 12 Basic functions, use the sketches to answer the following (we will focus on the algebraic properties in the coming weeks).

1. Which have domain $x \in \mathbb{R}$ (another way of saying this is domain is $x \in(-\infty, \infty)$, or $-\infty<x<\infty)$?

$$
f(x)=x, f(x)=x^{2}, f(x)=x^{3}, f(x)=e^{x}, f(x)=\sin (x), f(x)=\cos (x), f(x)=|x|, f(x)=\operatorname{int}(x), f(x)=\frac{1}{1+e^{-x}}
$$

2. Which have domain $x \in[0, \infty)$ (domain $0 \leq x<\infty$)?

$$
f(x)=\sqrt{x}
$$

3. Which have domain $x \in(0, \infty)$ (domain $0<x<\infty)$?

$$
f(x)=\ln (x)
$$

4. Which have range $y \in \mathbb{R}$ (range $-\infty<y<\infty$)?

$$
f(x)=x, \quad f(x)=x^{3}, \quad f(x)=\ln (x)
$$

5. Which have range $y \in[0, \infty)$ (range $0 \leq y<\infty)$?

$$
f(x)=x^{2}, \quad f(x)=\sqrt{x}, \quad f(x)=|x|
$$

6. Which have range $y \in(0, \infty)$ (range $0<y<\infty)$?

None.
7. Which have range $y \in(-\infty, 0) \cup(0, \infty)$ (range $-\infty<y<0$ union with $0<y<\infty$, which means $y \neq 0)$?

$$
f(x)=\frac{1}{x}
$$

8. Which have range $y \in(0,1)$ (range $0<y<1$)?

$$
f(x)=\frac{1}{1+e^{-x}}
$$

9. Which have vertical asymptotes?

$$
f(x)=\frac{1}{x} \text { has a vertical asymptote at } x=0
$$

Aside: More formally, we may write:
$\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)=\infty(\operatorname{read}$ "the limit as x approaches 0 from the right of $1 / x$ is infinity")
$\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}\right)=-\infty$ ("the limit as x approaches 0 from the left of $1 / x$ is minus infinity").
We will talk about these right and left handed limits more in the coming weeks. I am including them here to help us get comfortable with the notation.

$$
f(x)=\ln (x) \text { has a vertical asymptote at } x=0
$$

$\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$ (read "the limit as x approaches 0 from the right of $\ln (x)$ is minus infinity")
10. Which have horizontal asymptotes?
$f(x)=\frac{1}{x}$ has a horizontal asymptote at $y=0$
$\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)=0($ read "the limit as x approaches infinity of $1 / x$ is zero")
$\lim _{x \rightarrow-\infty}\left(\frac{1}{x}\right)=0$ (read "the limit as x approaches minus infinity of $1 / x$ is zero")
$f(x)=e^{x}$ has a horizontal asymptote at $y=0$
$\lim _{x \rightarrow-\infty}\left(e^{x}\right)=0$ (read "the limit as x approaches minus infinity of e^{x} is zero")
$f(x)=\frac{1}{1+e^{-x}}$ has a horizontal asymptote at $y=0$ and $y=1$
$\lim _{x \rightarrow \infty}\left(\frac{1}{1+e^{-x}}\right)=1\left(\mathrm{read}\right.$ "the limit as x approaches infinity of $\frac{1}{1+e^{-x}}$ is one")
$\lim _{x \rightarrow-\infty}\left(\frac{1}{1+e^{-x}}\right)=0\left(\right.$ read "the limit as x approaches minus infinity of $\frac{1}{1+e^{-x}}$ is zero")
11. Which have local extrema?
$f(x)=x^{2}$ has a global minimum of $y=0$ at $x=0$
$f(x)=\sqrt{x}$ has a global minimum of $y=0$ at $x=0$
$f(x)=\sin (x)$ has an infinite number of global minimums and maximums
$f(x)=\cos (x)$ has an infinite number of global minimums and maximums $f(x)=|x|$ has a global minimum of $y=0$ at $x=0$
12. Which are bounded below?

$$
f(x)=x^{2}, \quad f(x)=\sqrt{x}, \quad f(x)=e^{x}, \quad f(x)=\sin (x), \quad f(x)=\cos (x), \quad f(x)=|x|, \quad f(x)=\frac{1}{1+e^{-x}}
$$

13. Which have discontinuities?

$$
f(x)=\frac{1}{x}, \quad f(x)=\operatorname{int}(x)
$$

14. Which are even $(f(-x)=f(x)$ for all x in domain)?

$$
f(x)=x^{2}, \quad f(x)=\cos (x), \quad f(x)=|x|
$$

15. Which are odd $(f(-x)=-f(x)$ for all x in domain $)$?

$$
f(x)=x, \quad f(x)=x^{3}, \quad f(x)=\frac{1}{x}, \quad f(x)=\sin (x)
$$

16. Which are increasing over the interval $x \in(-\infty, 0)$ (increasing for $-\infty<x<0)$?

$$
f(x)=x, \quad f(x)=x^{3}, \quad f(x)=e^{x}, \quad f(x)=\frac{1}{1+e^{-x}}
$$

