

Concepts: Familiarity with graphs of the 12 Basic Functions, and determining the properties of these functions from their graphs.

Questions: For the 12 Basic functions, use the sketches to answer the following (we will focus on the algebraic properties in the coming weeks).

1. Which have domain $x \in \mathbb{R}$ (another way of saying this is domain is $x \in (-\infty, \infty)$, or $-\infty < x < \infty$)?

$$f(x) = x, \ f(x) = x^2, \ f(x) = x^3, \ f(x) = e^x, \ f(x) = \sin(x), \ f(x) = \cos(x), \ f(x) = |x|, \ f(x) = \operatorname{int}(x), \ f(x) = \frac{1}{1 + e^{-x}}$$

2. Which have domain $x \in [0, \infty)$ (domain $0 \le x < \infty$)?

$$f(x) = \sqrt{x}$$

3. Which have domain $x \in (0, \infty)$ (domain $0 < x < \infty$)?

$$f(x) = \ln(x)$$

4. Which have range $y \in \mathbb{R}$ (range $-\infty < y < \infty$)?

$$f(x) = x$$
, $f(x) = x^3$, $f(x) = \ln(x)$

5. Which have range $y \in [0, \infty)$ (range $0 \le y < \infty$)?

$$f(x) = x^2$$
, $f(x) = \sqrt{x}$, $f(x) = |x|$

- 6. Which have range $y \in (0, \infty)$ (range $0 < y < \infty$)? None.
- 7. Which have range $y \in (-\infty, 0) \cup (0, \infty)$ (range $-\infty < y < 0$ union with $0 < y < \infty$, which means $y \neq 0$)?

$$f(x) = \frac{1}{x}$$

8. Which have range $y \in (0, 1)$ (range 0 < y < 1)?

$$f(x) = \frac{1}{1 + e^{-x}}$$

9. Which have vertical asymptotes?

$$f(x) = \frac{1}{x}$$
 has a vertical asymptote at $x = 0$

Aside: More formally, we may write:

 $\lim_{x \to 0^+} \left(\frac{1}{x}\right) = \infty \text{ (read "the limit as } x \text{ approaches } 0 \text{ from the right of } 1/x \text{ is infinity")}$ $\lim_{x \to 0^-} \left(\frac{1}{x}\right) = -\infty \text{ ("the limit as } x \text{ approaches } 0 \text{ from the left of } 1/x \text{ is minus infinity")}.$

We will talk about these right and left handed limits more in the coming weeks. I am including them here to help us get comfortable with the notation.

 $f(x) = \ln(x)$ has a vertical asymptote at x = 0

 $\lim_{x \to 0^+} \ln(x) = -\infty \text{ (read "the limit as } x \text{ approaches } 0 \text{ from the right of } \ln(x) \text{ is minus infinity")}$

10. Which have horizontal asymptotes?

$$f(x) = \frac{1}{x}$$
 has a horizontal asymptote at $y = 0$

$$\lim_{x \to \infty} \left(\frac{1}{x}\right) = 0 \text{ (read "the limit as } x \text{ approaches infinity of } 1/x \text{ is zero")}$$
$$\lim_{x \to -\infty} \left(\frac{1}{x}\right) = 0 \text{ (read "the limit as } x \text{ approaches minus infinity of } 1/x \text{ is zero")}$$

 $f(x) = e^x$ has a horizontal asymptote at y = 0

 $\lim_{x \to -\infty} (e^x) = 0 \text{ (read "the limit as } x \text{ approaches minus infinity of } e^x \text{ is zero")}$

$$f(x) = \frac{1}{1 + e^{-x}}$$
 has a horizontal asymptote at $y = 0$ and $y = 1$

$$\lim_{x \to \infty} \left(\frac{1}{1 + e^{-x}} \right) = 1 \text{ (read "the limit as } x \text{ approaches infinity of } \frac{1}{1 + e^{-x}} \text{ is one")}$$
$$\lim_{x \to -\infty} \left(\frac{1}{1 + e^{-x}} \right) = 0 \text{ (read "the limit as } x \text{ approaches minus infinity of } \frac{1}{1 + e^{-x}} \text{ is zero")}$$

11. Which have local extrema?

4

 $f(x) = x^2$ has a global minimum of y = 0 at x = 0 $f(x)=\sqrt{x}$ has a global minimum of y=0 at x=0 $f(x) = \sin(x)$ has an infinite number of global minimums and maximums $f(x) = \cos(x)$ has an infinite number of global minimums and maximums f(x) = |x| has a global minimum of y = 0 at x = 0

12. Which are bounded below?

$$f(x) = x^2, \quad f(x) = \sqrt{x}, \quad f(x) = e^x, \quad f(x) = \sin(x), \quad f(x) = \cos(x), \quad f(x) = |x|, \quad f(x) = \frac{1}{1 + e^{-x}}$$

13. Which have discontinuities?

$$f(x) = \frac{1}{x}, \quad f(x) = \operatorname{int}(x)$$

14. Which are even (f(-x) = f(x) for all x in domain)?

$$f(x) = x^2$$
, $f(x) = \cos(x)$, $f(x) = |x|$

15. Which are odd (f(-x) = -f(x) for all x in domain)?

$$f(x) = x$$
, $f(x) = x^3$, $f(x) = \frac{1}{x}$, $f(x) = \sin(x)$

16. Which are increasing over the interval $x \in (-\infty, 0)$ (increasing for $-\infty < x < 0$)?

$$f(x) = x$$
, $f(x) = x^3$, $f(x) = e^x$, $f(x) = \frac{1}{1 + e^{-x}}$