
Precalculus: Complex Zeros

Concepts: basics of complex numbers, Fundamental Theorem of Algebra, polynomials with real coefficients, complex
conjugate zeros, polynomials of odd degree.

Complex Numbers

A complex number is typically denoted z ∈ C. We write the complex number in terms of its real part a and imaginary
part b as z = a+ bi, where a, b ∈ R and i =

√
−1.

Two complex numbers are equal if and only if their real and imaginary parts are equal.

A complex number can be represented as a point on the complex plane:

Notice that if a 6= 0, b = 0, the number a is a real number (as it lies on the real axis). Therefore, all real numbers are also
complex numbers.

If a = 0, b 6= 0, the number bi is called an imaginary number (as it lies on the imaginary axis).

The complex conjugate of z = a+ bi is defined as z̄ = a− bi.

The magnitude of a complex number z = a+ bi is given by the formula

|z| =
√
zz̄

=
√

(a+ bi)(a− bi)

=
√
a2 + b2

Note: |z| reduces to the familiar absolute value if z ∈ R.

Arithmetic with Complex Numbers

Addition and subtraction: collect real and imaginary parts:

(a+ bi)± (c+ di) = (a± c) + (b± d)i

Multiplication: use the distributive property and the fact i2 = −1 (do not memorize this formula):

(a+ bi)(c+ di) = a(c+ di) + bi(c+ di)

= ac+ adi+ bci+ bdi2

= ac+ adi+ bci− bd
= (ac− bd) + (ad+ bc)i
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Division: multiply the numerator and denominator by the complex conjugate of the denominator (do not memorize this
formula):

a+ bi

c+ di
=
a+ bi

c+ di
· c− di
c− di

=
(a+ bi)(c− di)
(c+ di)(c− di)

=
(ac+ bd) + (bc− ad)i

c2 + d2

=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i

The Fundamental Theorem of Algebra: A polynomial of degree n has n complex zeros (real and nonreal), some of
which may be repeated (a repeated zero will have multiplicity greater than one).

The Fundamental Theorem of Algebra tells us we may always factor f(x), a polynomial function of degree n, as

f(x) = a(x− z1)(x− z2) · · · (x− zn−1)(x− zn)

where a is the leading coefficient of f(x) and zi are the complex zeros of f(x). The Fundamental Theorem of Algebra
does not tell us how to determine this factorization, and proving the Fundamental Theorem of Algebra involves some very
advanced mathematics.

Important: A non-real zero zi of f is not an x-intercept of the graph of f(x). For example, f(x) = x2 + 1 has zeros z1 = i
and z2 = −i and factorization f(x) = (x − i)(x + i) yet f(x) is a quadratic that opens up with vertex at (0, 1) so it does
not cross the x-axis and has no x-intercepts.

This is only a bit of weirdness that crops up since we could be working with functions f(z) defined on the complex numbers
(with complex coefficients), but that is a significantly more complicated topic! We are just dipping our toe into the waters
of complex numbers here, and are still firmly rooted in working with real valued functions (with real valued coefficients).

Complex conjugate zeros If f is a polynomial with real coefficients, and a+ bi is a zero of f , then a− bi is also a zero
of f . That is, complex valued zeros of a polynomial with real coefficients always occur in complex conjugate pairs.

Polynomial of odd degree Since a polynomial of odd degree will have end behaviour that goes to positive infinity on
one side and negative infinity on the other side (and polynomials are continuous), it must touch the x-axis at least once.
This means all polynomials of odd degree will have at least one real valued zero. Another way of thinking of this is that
since complex zeros must occur in complex conjugate pairs, and there will be an odd number of zeros, at least one of the
zeros must be real valued.

Example Find the unique polynomial of degree 4 that has zeros 1− 2i and 1 + i that passes through the point (0, 20).

Unless we are explicitly told otherwise, we assume the polynomial has real coefficients. Therefore, the complex zeroes will
occur in complex conjugate pairs. We can write the polynomial as

f(x) = a[x− (1− 2i)][x− (1 + 2i)][x− (1 + i)][x− (1− i)]
= a[x2 − x(1− 2i)− x(1 + 2i) + (1− 2i)(1 + 2i)][x2 − x(1− i)− x(1 + i) + (1 + i)(1− i)]
= a[x2 − x+��2xi− x−��2xi+ 1− 4i2][x2 − x+��xi− x−��xi+ 1− i2]

= a[x2 − 2x+ 5][x2 − 2x+ 2]

= a(x2[x2 − 2x+ 2]− 2x[x2 − 2x+ 2] + 5[x2 − 2x+ 2])

= a(x4 − 2x3 + 2x2 − 2x3 + 4x2 − 4x+ 5x2 − 10x+ 10)

= a(x4 − 4x3 + 11x2 − 14x+ 10)

Notice we needed to include the leading coefficient, and use the fact that the polynomial passes through (0, 20) to determine
the value of a. f(0) = 10a = 20, so a = 2. Therefore, f(x) = 2x4 − 8x3 + 22x2 − 28x+ 20.
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Example Given that 1 + i is a zero of f(x) = x4−2x3−x2 + 6x−6, find all the zeros and write a linear factorization of f .

Aside and Looking Ahead: Connection of Complex Numbers with Trigonometry and Exponentials

Looking ahead, there is a deep and beautiful connection between complex numbers, trigonometry, and exponentials.
Looking back at our diagram of the complex plane, we can introduce an angle θ and distance r = |z| from polar coordinates.

This allows us to write

z = a+ bi

= |z| cos θ + |z| sin θi
= |z|(cos θ + i sin θ)

Looking ahead even further, there is a result that can be proven using calculus known as Euler’s Formula: eiθ = cos θ+i sin θ
for θ ∈ R. This means that we can write complex numbers in a variety of ways:

z = a+ bi = |z|(cos θ + i sin θ) = |z|eiθ

These powerful representations can be used to prove trig identities, determine roots of complex numbers, solve linear
differential equations, and a host of other things.

In my opinion, Euler’s formula is one of the most amazing formulas in mathematics. It kicks ASS!!
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