Concepts: Graphs of Sine, Cosine, Sinusoids, Terminology (amplitude, period, phase shift, frequency).

The Sine Function

Domain: $x \in \mathbb{R}$ Range: $y \in [-1, 1]$ Continuity: continuous for all xIncreasing-decreasing behaviour: alternately increasing and decreasing Symmetry: odd $(\sin(-x) = -\sin(x)))$ Boundedness: bounded above and below Local Extrema: absolute max of y = 1, absolute min of y = -1Horizontal Asymptotes: none Vertical Asymptotes: none

End behaviour: The limits as x approaches $\pm \infty$ do not exist since the function values oscillate between +1 and -1. This is a periodic function with period 2π .

The Cosine Function

Domain: $x \in \mathbb{R}$ Range: $y \in [-1, 1]$ Continuity: continuous for all xIncreasing-decreasing behaviour: alternately increasing and decreasing Symmetry: even $(\cos(-x) = \cos(x)))$ Boundedness: bounded above and below Local Extrema: absolute max of y = 1, absolute min of y = -1Horizontal Asymptotes: none Vertical Asymptotes: none End behaviour: The limits as x approaches $\pm \infty$ do not exist since the function values oscillate between +1 and -1. This is a periodic function with period 2π .

Terminology

The *amplitude* of $\sin \theta$ and $\cos \theta$ is 1. Graphically, this is half the height of the wave.

The *period* of $\sin \theta$ and $\cos \theta$ is length of one full cycle of the wave, which is 2π .

The *frequency* is the reciprocal of the period, so $\sin \theta$ and $\cos \theta$ have a frequency of $1/(2\pi)$. The frequency is the number of wave cycles the function completes in a unit interval.

Notice that $\cos\left(x - \frac{\pi}{2}\right) = \sin(x)$. This relation between the cosine and sine leads us to consider other functions that have the basic shape of a sine function, called *sinusoids*.

Sinusoids

Any function which can be written in the form

$$f(x) = a\sin(bx+c) + d$$

where a, b, c and d are constants (neither a = 0 nor b = 0) is called a —it sinusoid. Notice that a sinusoid is simply a (graphical or algebraic) transformation of the function $\sin x$. We will use this to understand the properties of sinusoids.

Terminology for Sinusoids

The *amplitude* of the sinusoid is |a|. Graphically, this is half the height of the wave.

The *period* of the sinusoid is length of one full cycle of the wave.

The *phase shift* is a measure of how the sinusoid is horizontally shifted from the original sine function.

Since the sine function $\sin \theta$ is periodic with period 2π , it completes one entire wave if $0 \le \theta \le 2\pi$.

Therefore, a sinusoid will complete one entire wave if (think of $\theta = bx + c$)

$$\begin{array}{rrrrr} 0 \leq & bx + c & \leq 2\pi \\ -c \leq & bx & \leq 2\pi - c \\ -\frac{c}{b} \leq & x & \leq \frac{2\pi}{b} - \frac{c}{b} & \text{if } b > 0 \end{array}$$

The sinusoid has period $2\pi/|b|$ and phase shift -c/b.

The *frequency* is the reciprocal of the period, so a sinusoid has a frequency of $|b|/(2\pi)$. The frequency is the number of wave cycles the function completes in a unit interval.

The sinusoid has a vertical shift of d.

Analyse each sinusoid individually instead of trying to memorize all this, as the following examples show.

Example Graph three periods of the function $y = 6\sin(4x)$, using transformations and not calculators.

The function $\sin \theta$ has period 2π , which means it completes one wave for $0 \le \theta \le 2\pi$. Our function will complete one entire wave in

 $\begin{array}{rrrr} 0 \leq & 4x & \leq 2\pi \\ 0 \leq & x & \leq \frac{2\pi}{4} \\ 0 \leq & x & \leq \frac{\pi}{2} \end{array}$

The period of the function is $\pi/2$, so will will need to plot the function for $0 \le x \le 3\pi/2$ to get three periods. The amplitude of the wave will be 6 units. From this we can get the sketch.

Example Graph two periods of the function $y = -\sin\left(\frac{x}{2}\right)$, using transformations and not calculators.

The function $\sin \theta$ has period 2π , which means it completes one wave for $0 \le \theta \le 2\pi$. Our function will complete one entire wave in

$$\begin{array}{rcl} 0 \leq & \frac{x}{2} & \leq 2\pi \\ 0 \leq & x & \leq 4\pi \end{array}$$

The period of the function is 4π , so will will need to plot the function for $0 \le x \le 8\pi$ to get two periods. The amplitude of the wave will be 1 units. The minus sign out front means the graph will be reflected about the *x*-axis.

From this we can get the sketch.

Example Find the amplitude, period, frequency, phase shift and vertical shift of the sinusoid

 $y = 3\cos(-2x+1) - 2.$

Note: Although this is a cosine, it is still considered a sinusoid, and we can sketch it by thinking of translating the graph of $\cos x$ rather than $\sin x$.

The amplitude of the sinusoid is |a| = 3.

Since the cosine function is periodic with period 2π , it completes one entire wave if $0 \le \theta \le 2\pi$.

Therefore, the sinusoid will complete one entire wave if

The sinusoid has period π and phase shift 1/2.

The frequency is the reciprocal of the period, so a sinusoid has a frequency of $1/\pi$.

The sinusoid has a vertical shift of -2.

We can sketch the sinusoid once we know all of this information. Here is a sketch of one period of the cosine function, and one period of the sinusoid.

