Concepts: Graphs of Sine, Cosine, Sinusoids, Terminology (amplitude, period, phase shift, frequency).

The Sine Function

Domain: $x \in \mathbb{R}$
Range: $y \in[-1,1]$
Continuity: continuous for all x
Increasing-decreasing behaviour: alternately increasing and decreasing
Symmetry: odd $(\sin (-x)=-\sin (x)))$
Boundedness: bounded above and below
Local Extrema: absolute max of $y=1$, absolute min of $y=-1$
Horizontal Asymptotes: none
Vertical Asymptotes: none
End behaviour: The limits as x approaches $\pm \infty$ do not exist since the function values oscillate between +1 and -1 .
This is a periodic function with period 2π.

The Cosine Function

Domain: $x \in \mathbb{R}$
Range: $y \in[-1,1]$
Continuity: continuous for all x
Increasing-decreasing behaviour: alternately increasing and decreasing
Symmetry: even $(\cos (-x)=\cos (x)))$
Boundedness: bounded above and below
Local Extrema: absolute max of $y=1$, absolute min of $y=-1$
Horizontal Asymptotes: none
Vertical Asymptotes: none
End behaviour: The limits as x approaches $\pm \infty$ do not exist since the function values oscillate between +1 and -1 .
This is a periodic function with period 2π.

Terminology

The amplitude of $\sin \theta$ and $\cos \theta$ is 1 . Graphically, this is half the height of the wave.
The period of $\sin \theta$ and $\cos \theta$ is length of one full cycle of the wave, which is 2π.
The frequency is the reciprocal of the period, so $\sin \theta$ and $\cos \theta$ have a frequency of $1 /(2 \pi)$. The frequency is the number of wave cycles the function completes in a unit interval.

Notice that $\cos \left(x-\frac{\pi}{2}\right)=\sin (x)$. This relation between the cosine and sine leads us to consider other functions that have the basic shape of a sine function, called sinusoids.

Sinusoids

Any function which can be written in the form

$$
f(x)=a \sin (b x+c)+d
$$

where a, b, c and d are constants (neither $a=0$ nor $b=0$) is called a -it sinusoid. Notice that a sinusoid is simply a (graphical or algebriac) transformation of the function $\sin x$. We will use this to understand the properties of sinusoids.

Terminology for Sinusoids

The amplitude of the sinusoid is $|a|$. Graphically, this is half the height of the wave.
The period of the sinusoid is length of one full cycle of the wave.
The phase shift is a measure of how the sinusoid is horizontally shifted from the original sine function.
Since the sine function $\sin \theta$ is periodic with period 2π, it completes one entire wave if $0 \leq \theta \leq 2 \pi$.
Therefore, a sinusoid will complete one entire wave if (think of $\theta=b x+c$)

$$
\begin{aligned}
0 & \leq b x+c & \leq 2 \pi \\
-c & \leq \quad b x & \leq 2 \pi-c \\
-\frac{c}{b} & \leq \quad x & \leq \frac{2 \pi}{b}-\frac{c}{b} \quad \text { if } b>0
\end{aligned}
$$

The sinusoid has period $2 \pi /|b|$ and phase shift $-c / b$.
The frequency is the reciprocal of the period, so a sinusoid has a frequency of $|b| /(2 \pi)$. The frequency is the number of wave cycles the function completes in a unit interval.
The sinusoid has a vertical shift of d.
Analyse each sinusoid individually instead of trying to memorize all this, as the following examples show.

Example Graph three periods of the function $y=6 \sin (4 x)$, using transformations and not calculators.
The function $\sin \theta$ has period 2π, which means it completes one wave for $0 \leq \theta \leq 2 \pi$.
Our function will complete one entire wave in

$$
\begin{aligned}
& 0 \leq 4 x \leq 2 \pi \\
& 0 \leq \quad x \leq \frac{2 \pi}{4} \\
& 0 \leq \quad x \leq \frac{\pi}{2}
\end{aligned}
$$

The period of the function is $\pi / 2$, so will will need to plot the function for $0 \leq x \leq 3 \pi / 2$ to get three periods.
The amplitude of the wave will be 6 units. From this we can get the sketch.

Example Graph two periods of the function $y=-\sin \left(\frac{x}{2}\right)$, using transformations and not calculators.
The function $\sin \theta$ has period 2π, which means it completes one wave for $0 \leq \theta \leq 2 \pi$.
Our function will complete one entire wave in

$$
\begin{aligned}
& 0 \leq \quad \frac{x}{2} \leq 2 \pi \\
& 0 \leq \quad x \leq 4 \pi
\end{aligned}
$$

The period of the function is 4π, so will will need to plot the function for $0 \leq x \leq 8 \pi$ to get two periods.
The amplitude of the wave will be 1 units. The minus sign out front means the graph will be reflected about the x-axis.
From this we can get the sketch.

Example Find the amplitude, period, frequency, phase shift and vertical shift of the sinusoid

$$
y=3 \cos (-2 x+1)-2
$$

Note: Although this is a cosine, it is still considered a sinusoid, and we can sketch it by thinking of translating the graph of $\cos x$ rather than $\sin x$.

The amplitude of the sinusoid is $|a|=3$.
Since the cosine function is periodic with period 2π, it completes one entire wave if $0 \leq \theta \leq 2 \pi$.
Therefore, the sinusoid will complete one entire wave if

$$
\begin{aligned}
0 & \leq & -2 x+1 & & \leq 2 \pi \\
-1 & \leq & -2 x & & \leq 2 \pi-1 \\
\frac{1}{2} & \geq & x & & \geq-\pi+\frac{1}{2} \\
\frac{1}{2}-\pi & \leq & x & & \leq \frac{1}{2}
\end{aligned}
$$

The sinusoid has period π and phase shift $1 / 2$.
The frequency is the reciprocal of the period, so a sinusoid has a frequency of $1 / \pi$.
The sinusoid has a vertical shift of -2 .
We can sketch the sinusoid once we know all of this information. Here is a sketch of one period of the cosine function, and one period of the sinusoid.

