## Questions

1. Factor $f(x)=x^{4}+x^{3}+5 x^{2}-x-6$.
2. Factor $f(x)=x^{3}+4 x-5$.
3. Determine the real and imaginary parts of the complex number $\sqrt{i}$. Hint: Let $\sqrt{i}=a+b i a, b \in \mathbb{R}$, and then try to determine the values of $a$ and $b$.
4. Verify that $-2 i$ is a zero of $f(x)=x^{3}-(2-i) x^{2}+(2-2 i) x-4$.
5. If $z$ is a complex number, which of the following is a real number?
(a) $z+\bar{z}$
(b) $z \bar{z}$
(c) $(z+\bar{z})^{2}$
(d) $(z \bar{z})^{2}$
(e) $z^{2}$
6. Write the polynomial $f(x)=x(x-1)(x-1-i)(x-1+i)$ in standard form, and identify the zeros of the function and the $x$-intercepts of its graph.
7. Can a polynomial $f(x)$ of degree five with real coefficients have exactly two $x$-intercepts? Explain.

## Solutions

1. Factor $f(x)=x^{4}+x^{3}+5 x^{2}-x-6$.

$$
\begin{aligned}
& f(x)=x^{4}+x^{3}+5 x^{2}-x-6 \quad \square \quad x+1 \sqrt{x^{3}+2 x^{2}+7 x+6} \\
& \text { Notice } f(1)=0 \text {. } \\
& \text { Therefore, divide } x-1 \text { into } f(x) \text {. } \\
& x-1 \sqrt{x^{4}+x^{3}+5 x^{2}+x-6}{ }^{2} \\
& \frac{x^{4}-x^{3}}{2 x^{3}+5 x^{2}-x-6} \\
& \frac{2 x^{3}-2 x^{2}}{7 x^{2}-x-6} \\
& \frac{7 x^{2}-7 x}{6 x-6} \\
& \frac{6 x-6}{0} \\
& f(x)=(x-1)\left(x^{3}+2 x^{2}+7 x+6\right) \\
& \text { Note } x^{3}+2 x^{2}+7 x+\left.6\right|_{x=-1}=0 \\
& \text { so divide } x+1 \text { into } x^{3}+2 x^{2}+7 x+6 \text {. } \\
& \text { Quadratic formula to get zeros of quadratic: } \\
& x=\frac{-1 \pm \sqrt{1^{2}-4(1)(6)}}{2}=-\frac{1}{2} \pm \frac{\sqrt{23} i}{2} \\
& \text { zeros of } f(x) \text { are } x= \pm 1, x=-\frac{1}{2} \pm \frac{\sqrt{23}}{2} i \text {. } \\
& \text { Factored form: } \\
& f(x)=(x-1)(x+1)\left(x-\left[-\frac{1}{2}+\frac{\sqrt{23}}{2} i\right]\right)\left(x-\left[-\frac{1}{2}-\frac{\sqrt{23} i}{2} i\right]\right) \\
& =(x-1)(x+1)\left(x+\frac{1}{2}-\frac{\sqrt{23}}{2} i\right)\left(x+\frac{1}{2}+\frac{\sqrt{23}}{2} i\right)
\end{aligned}
$$

2. Factor $f(x)=x^{3}+4 x-5$.

$$
\begin{aligned}
& f(x)=x^{3}+4 x-5 \quad \text { Use quadratic formula to factor } \\
& \text { since } f(1)=1^{3}+4(1)-5=0 \text {, } \\
& \text { weknow we can factor } x-1 \\
& \text { evenly into } f(x) \\
& x - 1 \longdiv { x ^ { 3 } + 0 x ^ { 2 } + 4 x - 5 } \\
& \frac{x^{3}-x^{2}}{x^{2}+4 x-5} \\
& \frac{x^{2}-x}{5 x-5} \\
& \frac{5 x-5}{0} \\
& f(x)=(x-1)\left(x^{2}+x+5\right) \\
& \text { quadratic, } x^{2}+x+5 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1 \pm \sqrt{(-1)^{2}-4(.)(5)}}{2(1)} \\
& =\frac{-1 \pm \sqrt{-19}}{2} \\
& =-\frac{1}{2} \pm \frac{\sqrt{19}}{2} i \\
& \text { Zeros are } x=1,-\frac{1}{2}+\frac{\sqrt{19}}{2} i,-\frac{1}{2}-\frac{\sqrt{19}}{2} i \text {. } \\
& \text { factors are } x-1 \\
& x-\left(-\frac{1}{2}+\frac{\sqrt{19}}{2} i\right) \\
& x-\left(-\frac{1}{2}-\frac{\sqrt{19}}{2} i\right) \\
& f(x)=(x-1)\left(x+\frac{1}{2}-\frac{\sqrt{19}}{2} i\right)\left(x+\frac{1}{2}+\frac{\sqrt{19}}{2} i\right)
\end{aligned}
$$

3. Determine the real and imaginary parts of the complex number $\sqrt{i}$. Hint: Let $\sqrt{i}=a+b i a, b \in \mathbb{R}$, and then try to determine the values of $a$ and $b$.

4. Verify that $-2 i$ is a zero of $f(x)=x^{3}-(2-i) x^{2}+(2-2 i) x-4$.

$$
\begin{aligned}
f(x) & =x^{3}-(2-i) x^{2}+(2-2 i) x-4 \\
f(-2 i) & =(-2 i)^{3}-(2-i)(-2 i)^{2}+(2-2 i)(-2 i)-4 \\
& =(-2)^{3} i^{3}-(2-i)(-2)^{2} i^{2}-4 i+4 i^{2}-4 \\
& =(-8)\left(i^{2}\right) i-(2-i)(4)(-1)-4 i+4(-1)-4 \\
& =(-8)(-1) i-(-8+4 i)-4 i-8 \\
& =8 i+8-4 i-4 i-8 \\
& =0
\end{aligned}
$$

5. If $z$ is a nonreal complex number, which of the following is a real number?
(a) $z+\bar{z}$
(b) $z \bar{z}$
(c) $(z+\bar{z})^{2}$
(d) $(z \bar{z})^{2}$
(e) $z^{2}$

Let $a=a+b i$ with $a, b \in \mathbb{R}$, so $\bar{z}=a-b i$ and simplify each case.
(a) $z+\bar{z}=a+b i+a-b i=2 a \in \mathbb{R}$
(b) $z \bar{z}=(a+b i)(a-b i)=a^{2}-b i^{2}=a^{2}+b^{2} \in \mathbb{R}$
(c) $(z+\bar{z})^{2} \in \mathbb{R}$ since $z+\bar{z} \in \mathbb{R}$
(d) $(z \bar{z})^{2} \in \mathbb{R}$ since $z \bar{z} \in \mathbb{R}$
(e) $z^{2}=(a+b i)^{2}=a^{2}+2 a b i+b^{2} i^{2}=\left(a^{2}-b^{2}\right)+2 a b i$ is not $\mathbb{R}$ unless $a=0$
6. Write the polynomial $f(x)=x(x-1)(x-1-i)(x-1+i)$ in standard form, and identify the zeros of the function and the $x$-intercepts of its graph.

Zeros of $f(x)$ are: $x=0,1,1 \pm i$.
$x$-intercepts of the graph of $f(x)$ are the real zeros only, so $x=0,1$.
Multiply out to get in standard form:

$$
\begin{aligned}
f(x) & =x(x-1)(x-1-i)(x-1+i) \\
& =\left(x^{2}-x\right)(x-[1+i])(x-[1-i]) \\
& =\left(x^{2}-x\right)\left(x^{2}+[1+i][1-i]-x[1+i]-x[1-i]\right) \\
& =\left(x^{2}-x\right)\left(x^{2}+1-i^{2}-x-x i-x \neq x i\right) \\
& =\left(x^{2}-x\right)\left(x^{2}+1-(-1)-2 x\right) \\
& =\left(x^{2}-x\right)\left(x^{2}+2-2 x\right) \\
& =\left(x^{2}-x\right)\left(x^{2}-2 x+2\right) \\
& =x^{2}\left(x^{2}-2 x+2\right)-x\left(x^{2}-2 x+2\right) \\
& =x^{4}-2 x^{3}+2 x^{2}-x^{3}+2 x^{2}-2 x \\
& =x^{4}-3 x^{3}+4 x^{2}-2 x
\end{aligned}
$$

7. Can a polynomial $f(x)$ of degree five with real coefficients have exactly two $x$-intercepts? Explain.

Yes, but one of the $x$-intercepts must be of multiplicity two or four so the function $f(x)$ does not change sign there. The other $x$-intercept will be of multiplicity one. For a specific example, consider $f(x)=(x-1) x^{2}\left(x^{2}+1\right)=x^{5}-x^{4}+x^{3}-x^{2}$, which is degree five with $x$-intercepts of 0 (multiplicity 2 ) and 1 (multiplicity 2 ). An example having multiplicity four for one of the intercepts would be $f(x)=(x-1) x^{4}$.
Note that $x$-intercepts correspond to real valued factors.

