Questions

1. Match the function with its graph
(a) $y=x+\sin 4 x$
(b) $y=x \sin 4 x$
(c) $y=\cos x+\sin 2 x$
(d) $y=e^{-x^{2}} \sin 10 x$

2. Match the function with its graph
(a) $y=\sin 2 x$
(b) $y=\sin (x / 2)$
(c) $y=\cos 2 x$
(d) $y=\cos (x / 2)$

3. Does the function $f(x)=\left(\frac{1}{4}\right)^{x} \sin (\pi x+\pi / 3), x \in[0, \infty)$ exhibit damping? If so, identify the damping factor and tell if the damping occurs as $x \rightarrow \infty$ or $x \rightarrow 0$.
4. Algebraically show the function $y=\sin ^{3} x$ is a periodic function with period at least 2π.

Do you think $y=\sin \left(x^{3}\right)$ is periodic? Why or why not?

Solutions

1. Match the function with its graph
(a) $y=x+\sin 4 x$
(b) $y=x \sin 4 x$
(c) $y=\cos x+\sin 2 x$
(d) $y=e^{-x^{2}} \sin 10 x$

(d)

(a)

(b)

(c)
2. Match the function with its graph
(a) $y=\sin 2 x$
(b) $y=\sin (x / 2)$
(c) $y=\cos 2 x$
(d) $y=\cos (x / 2)$

(d)

(b)

(a)

(c)
3. Does the function $f(x)=\left(\frac{1}{4}\right)^{x} \sin (\pi x+\pi / 3), x \in[0, \infty)$ exhibit damping? If so, identify the damping factor and tell if the damping occurs as $x \rightarrow \infty$ or $x \rightarrow 0$.
The factor $\left(\frac{1}{4}\right)^{x}$ will determine if there is damping. This is an exponential with base $b<1$, so it will approach zero as $x \rightarrow \infty$, so it is a damping factor.
The function f will experience damping as $x \rightarrow \infty$, and oscillate between the envelope functions $y= \pm\left(\frac{1}{4}\right)^{x}$.
Here is a sketch (done by computer) that verifies our conclusions:

4. Algebraically show the function $y=\sin ^{3} x$ is a periodic function with period at least 2π.

Do you think $y=\sin \left(x^{3}\right)$ is periodic? Why or why not?
Let $f(x)=\sin ^{3} x$.

$$
\begin{aligned}
f(x+2 \pi) & =\sin ^{3}(x+2 \pi)=(\sin (x+2 \pi))^{3} \\
& =(\sin (x))^{3}=\sin ^{3} x \\
& =f(x)
\end{aligned}
$$

So it is periodic, with periodic at least 2π. We would need to sketch to determine if the period was less than 2π. As the computer sketch below shows, the period of $y=\sin ^{3} x$ is 2π.
I would not expect $y=\sin \left(x^{3}\right)$ to be periodic, although I would expect it to oscillate between -1 and 1 .
Why? Think of what happens to the angle x^{3} as x increases. Since the quantity x^{3} will move around the unit circle at an ever increasing rate (remember, x^{3} is the angle!), I would expect the graph of $\sin \left(x^{3}\right)$ to move between -1 and 1 more rapidly as x increases. This is in fact exactly what happens for the graph of $y=\sin \left(x^{3}\right)$, as the following computer sketch shows!

