Questions

1. Sketch $6 x+3 y-x^{2}=9$ by hand. Include all steps in your solution. Identify the focus and directrix of the parabola.
2. Sketch $3 y^{2}-4 y+3 x-7=0$ by hand. Include all steps in your solution. Identify the focus and directrix of the parabola.
3. Sketch $y^{2}-3 y-3 x+7=0$ and $y-x^{2}+x=0$ by hand on the same set of axis. Do the curves intersect? If so, can you determine the points of intersection by hand?
4. Analyze the quadratic $y=a x^{2}+b x+c, a>0$, and show that it is a parabola. Determine the vertex, focus, and directrix.

Solutions

1. Sketch $6 x+3 y-x^{2}=9$ by hand. Include all steps in your solution. Identify the focus and directrix of the parabola.

$$
\left.\begin{array}{l}
6 x+3 y-x^{2}=9 \\
\text { complete the square in } x \\
-1\left(x^{2}-6 x\right)=-3 y+9 \\
-1(\underbrace{2}-6 x+9 \\
-9
\end{array}\right)=-3 y+9 .
$$

This is standard form of parabola opening up, with wester (3,0).

$$
(x-h)^{2}=4 p(y-k)
$$

Also, $4 \rho=3 \Rightarrow p=3 / 4$.
Focus is $(3,3 / 4)=(h, k+p)$
Directrix is $y=-3 / 4$.

2. Sketch $3 y^{2}-4 y+3 x-7=0$ by hand. Include all steps in your solution. Identify the focus and directrix of the parabola.

$$
\begin{aligned}
& \begin{array}{l}
3 y^{2}-4 y+3 x-7=0 \\
\quad[\underbrace{y^{2}-\frac{4}{3} y+\left(\frac{2}{3}\right)^{2}}-\left(\frac{2}{3}\right)^{2}]+3 x-7=0
\end{array} \\
& 3\left[\left(y-\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)^{2}\right]+3 x-7=0 \\
& 3\left(y-\frac{2}{3}\right)^{2}-\frac{4}{3}+3 x-7=0 \\
& 3\left(y-\frac{2}{3}\right)^{2}=-3 x+\frac{25}{3} \\
& \left(y-\frac{2}{3}\right)^{2}=-x+\frac{25}{9} \\
& \left(y-\frac{2}{3}\right)^{2}=-1\left(x-\frac{25}{9}\right) \\
& \text { This is the standard form of } \\
& \text { a parabola opening to the } \\
& \text { left with vertex }\left(\frac{25}{9}, \frac{2}{3}\right) \\
& \text { If } x=0,(y-2 / 3)^{2}=25 / 9 \\
& y=\frac{2}{3} \pm \frac{5}{3}=\frac{7}{3},-1 . \\
& \text { I wanted to get these points } \\
& (0,7 / 3) \text { and }(0,-1) \text {, to make } \\
& \text { my sketch more accurate. } \\
& \text { The standard form is } \\
& \text { so }-4 p=-1 \Rightarrow p=1 / 4 \\
& \text { The focus is }\left(\frac{25}{9}-\frac{1}{4}, 2 / 3\right)=\left(\frac{91}{36}, 2 / 3\right) \\
& \text { The directrix is } x=\frac{25}{9}+\frac{1}{4}=\frac{109}{36}
\end{aligned}
$$

3. Sketch $y^{2}-3 y-3 x+7=0$ and $y-x^{2}+x=0$ by hand on the same set of axis. Do the curves intersect? If so, can you determine the points of intersection by hand?

$$
\begin{gathered}
\text { Sketch } y^{2}-3 y-3 x+7=0 \\
\underbrace{y^{2}-3 y+\left(\frac{3}{2}\right)^{2}}-\left(\frac{3}{2}\right)^{2}=3 x-7 \\
\left(y-\frac{3}{2}\right)^{2}=3 x-7+\frac{9}{4} \\
\left(y-\frac{3}{2}\right)^{2}=3 x-\frac{19}{4} \\
\left(y-\frac{3}{2}\right)^{2}=3\left(x-\frac{19}{12}\right)
\end{gathered}
$$

parabola, opens right, vertex $(19 / 12,3 / 2)$.

Points of intersection:

$$
\begin{aligned}
& y-x^{2}+x=0 \rightarrow y=x^{2}-x \text {, sub into other equation } \\
& \left(x^{2}-x\right)^{2}-3\left(x^{2}-x\right)-3 x+7=0 \text { which will be difficult to solve. } \\
& \text { we would need to use a computes to proceed. }
\end{aligned}
$$

4. Analyze the quadratic $y=a x^{2}+b x+c, a>0$, and show that it is a parabola. Determine the vertex, focus, and directrix.

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& y-c=a\left(x^{2}+\frac{b x}{a}\right) \\
& =a[\underbrace{x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}}-\left(\frac{b}{2 a}\right)^{2}] \\
& =a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}\right] \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a} \\
& y-c+\frac{b^{2}}{4 a}=a\left(x+\frac{b}{2 a}\right)^{2} \\
& y+\frac{b^{2}-4 a c}{4 a}=a\left(x+\frac{b}{2 a}\right)^{2} \\
& \Rightarrow \quad\left(x+\frac{b}{2 a}\right)^{2}=\frac{1}{a}\left(y+\frac{b^{2}-4 a c}{4 a}\right) \\
& \text { Compare to }(x-h)^{2}=4 p(y-k) \\
& \text { parabola opens up, vertex }(h, k) \text {. }
\end{aligned}
$$

