Questions

1. Sketch $9x^2 + 4y^2 - 18x + 8y - 23 = 0$ by hand. Include all steps in your solution. Identify the vertices and foci of the ellipse.

2. Sketch $x^2/4 + y^2/9 = 1$ and $x^2 + y^2 = 4$ by hand on the same set of axis. Do the curves intersect? If so, can you determine the points of intersection by hand?

3. The graph of the equation $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 0$ is considered to be a degenerate ellipse. Describe the graph.

4. Prove that the nondegenerate graph of the equation $Ax^2 + Cy^2 + Dx + Ey + F = 0$ is an ellipse if AC > 0.

5. Determine the perimeter of a triangle with one vertex on the ellipse $x^2/a^2 + y^2/b^2 = 1$ and the other two vertices at the foci of the ellipse.

Solutions

1. Sketch $9x^2 + 4y^2 - 18x + 8y - 23 = 0$ by hand. Include all steps in your solution. Identify the vertices and foci of the ellipse.

$$\begin{array}{l} 9x^{2} + 4y^{2} - 18x + 8y - 23 = 0 \\ \text{complete the square in both x and y.} \\ 9x^{2} - 18x + 4y^{2} + 8y = 23 \\ 9[x^{2} - 2x + 1 - 1] + 4[y^{2} + 2y + 1 - 1] = 23 \\ 9[x^{2} - 2x + 1 - 1] + 4[y^{2} + 2y + 1 - 1] = 23 \\ 9[(x - 1)^{2} - 1] + 4[(y + 1)^{2} - 1] = 23 \\ 9[(x - 1)^{2} - q] + 4((y + 1)^{2} - 1] = 23 \\ 9(x - 1)^{2} - q] + 4((y + 1)^{2} - 4 = 23 \\ 9(x - 1)^{2} -$$

2. Sketch $x^2/4 + y^2/9 = 1$ and $x^2 + y^2 = 4$ by hand on the same set of axis. Do the curves intersect? If so, can you determine the points of intersection by hand?

sketch
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

ellipse \rightarrow get the box
that bounds it!
If $x=0$, $\frac{y^2}{9} = 1$
 $y=\pm 3$
 $(0,3)$, $(0,3)$ on box
If $y=0$, $\frac{x^2}{4} = 1$
 $x=\pm 2$
 $(2,0)$, $(-2,0)$ on box
 $(2,0)$, $(-2,0)$, $(-2,0)$.
 $(2,0)$, $(-2,0)$, $(-2,0)$.
 $(2,0)$, $(-2,0)$, $(-2,0)$.
 $(2,0)$, $(-2,0)$.
 $(2,0)$, $(-2,0)$.
 $(2,0)$, $(-2,0)$.
 $(2,0)$, $(-2,0)$.
 $(2,0)$, $(-2,0)$.
 $(2,0)$, $(-2,0)$.

3. The graph of the equation $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 0$ is considered to be a degenerate ellipse. Describe the graph.

If
$$x = h$$
, then $\frac{(y-k)^2}{b^2} = 0$
 $y = k$.
point (h,k) .
If $y = k$, then $\frac{(x-h)^2}{a^2} = 0$
point (h,k) .
So it looks like $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 0$
 $(y-k)^2 = -\frac{b^2}{a^2} (x-h)^2$
 $(y-k)^2 = -\frac{b^2}{a^2} (x-h)^2$
 $(y-k)^2 = -\frac{b^2}{a^2} (x-h)^2$
 $(y-k)^2 = -\frac{b^2}{a^2} (x-h)^2$
 $(y-k) = \pm \int -\frac{b^2}{a^2} (x-h)^2$
 $(x-h) i$
 $(y-k) = \frac{b^2}{a^2} (x-h)^2$
 $(x-h) =$

4. Prove that the nondegenerate graph of the equation $Ax^2 + Cy^2 + Dx + Ey + F = 0$ is an ellipse if AC > 0.

$$\begin{aligned} Ax^{2} + Cy^{2} + Dx + Ey + F = 0 \\ \text{complete the square in x and y.} \\ A\left[x^{2} + \frac{D}{A}x + \left(\frac{D}{2A}\right)^{2} - \left(\frac{D}{2A}\right)^{2}\right] + C\left[y^{2} + \frac{E}{C}y + \left(\frac{E}{2c}\right)^{2} - \left(\frac{E}{2e}\right)^{2}\right] = -F \\ A\left[(x + \frac{D}{2A})^{2} - \left(\frac{D}{2A}\right)^{2}\right] + C\left[(y + \frac{E}{2c})^{2} - \left(\frac{E}{2c}\right)^{3}\right] = -F \\ A(x + \frac{D}{2A})^{2} - \frac{D^{2}}{4A} + C\left(y + \frac{E}{2c}\right)^{2} - \frac{E^{2}}{4C} = -F \\ A(x + \frac{D}{2A})^{2} + C\left(y + \frac{E}{2c}\right)^{2} = \frac{D^{2}}{4A} + \frac{E^{2}}{4C} - F \\ A(x + \frac{D}{2A})^{2} + C\left(y + \frac{E}{2c}\right)^{2} = \frac{D^{2}}{4A} + \frac{E^{2}}{4C} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{4A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{A^{2}c} + \frac{E^{2}}{4Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{A^{2}c} + \frac{E^{2}}{Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2c})^{2}}{A} = \frac{D^{2}}{A^{2}c} + \frac{E^{2}}{Ac^{2}} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(y + \frac{E}{2C})^{2}}{A} = \frac{D^{2}}{A^{2}c} + \frac{E^{2}}{A^{2}c} - F \\ \frac{(x + \frac{D}{2A})^{2}}{C} + \frac{(x + \frac{D}{2A}$$

5. Determine the perimeter of a triangle with one vertex on the ellipse $x^2/a^2 + y^2/b^2 = 1$ and the other two vertices at the foci of the ellipse.

