Questions

1. Sketch $9 x^{2}+4 y^{2}-18 x+8 y-23=0$ by hand. Include all steps in your solution. Identify the vertices and foci of the ellipse.
2. Sketch $x^{2} / 4+y^{2} / 9=1$ and $x^{2}+y^{2}=4$ by hand on the same set of axis. Do the curves intersect? If so, can you determine the points of intersection by hand?
3. The graph of the equation $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=0$ is considered to be a degenerate ellipse. Describe the graph.
4. Prove that the nondegenerate graph of the equation $A x^{2}+C y^{2}+D x+E y+F=0$ is an ellipse if $A C>0$.
5. Determine the perimeter of a triangle with one vertex on the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ and the other two vertices at the foci of the ellipse.

Solutions

1. Sketch $9 x^{2}+4 y^{2}-18 x+8 y-23=0$ by hand. Include all steps in your solution. Identify the vertices and foci of the ellipse.

$$
\begin{aligned}
& \begin{array}{l}
9 x^{2}+4 y^{2}-18 x+8 y-23=0 \\
\text { complete the square in both } x \text { and } y .
\end{array} \quad \text { If } y=-1, \frac{(x-1)^{2}}{2^{2}}=1 \\
& 9 x^{2}-18 x+4 y^{2}+8 y=23 \\
& 9[\underbrace{x^{2}-2 x+1}-1]+4[\underbrace{y^{2}+2 y+1}-1]=23 \\
& 9\left[(x-1)^{2}-1\right]+4\left[(y+1)^{2}-1\right]=23 \\
& 9(x-1)^{2}-9+4(y+1)^{2}-4=23 \\
& 9(x-1)^{2}+4(y+1)^{2}=36 \\
& \frac{(x-1)^{2}}{2^{2}}+\frac{(y+1)^{2}}{3^{2}}=1 \\
& \text { ellipse! center. }(1,-1) \text {. } \\
& \text { If } x=1, \frac{(y+1)^{2}}{3^{2}}=1 \\
& y+1= \pm 3 \text { are on ellipse. } \\
& y=2,-4 \text {. }
\end{aligned}
$$

2. Sketch $x^{2} / 4+y^{2} / 9=1$ and $x^{2}+y^{2}=4$ by hand on the same set of axis. Do the curves intersect? If so, can you determine the points of intersection by hand?

$$
\begin{aligned}
& \text { SKetch } \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 \\
& \begin{aligned}
& \text { ellipse } \rightarrow \text { get the box } \\
& \text { that bounds it! }
\end{aligned} \\
& \text { If } x=0, \frac{y^{2}}{9}=1 \\
& y= \pm 3 \\
& (0,3),(0,-3) \text { on box } \\
& \text { If } y=0, \frac{x^{2}}{4}=1 \\
& x= \pm 2 \\
& (2,0),(-2,0) \text { on box } \\
& \text { From second equation, } x^{2}=4-y^{2} \text {, sub into first equation: } \\
& \begin{array}{l}
\frac{4-y^{2}}{4}+\frac{y^{2}}{9}=1 \\
1-\frac{y^{2}}{4}+\frac{y^{2}}{9}=1 \\
\rightarrow y=0 .
\end{array} \quad \begin{array}{l}
\text { If } y=0 \text {, then } x^{2}+0^{2}=4 \\
x= \pm 2 . \\
\text { only two points of intersection, } \\
(2,0) \text {, and }(-2,0) .
\end{array}
\end{aligned}
$$

3. The graph of the equation $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=0$ is considered to be a degenerate ellipse. Describe the graph.

$$
\begin{aligned}
& \begin{array}{l}
\text { If } x=h, \text { then } \frac{(y-k)^{2}}{b^{2}}=0 \\
y=k .
\end{array} \quad \begin{array}{l}
\text { point }(h, k) . \\
\text { from can also see this } \\
\text { directly for } y \text { : }
\end{array} \\
& \text { If } y=k \text {, then } \frac{(x-h)^{2}}{a^{2}}=0 \\
& \text { point (h,k). } \\
& \begin{array}{l}
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=0 \\
(y-k)^{2}=-\frac{b^{2}}{a^{2}}(x-h)^{2}
\end{array} \\
& y-k= \pm \sqrt{-\frac{b^{2}}{a^{2}}(x-h)^{2}} \\
& =\frac{b}{a}(x-h) i \\
& \begin{array}{l}
\text { consists of a single point, }(h, k) \text {, the } \\
\text { center of the ellipse } \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \text {. }
\end{array} \\
& y=k+\frac{b}{a}(x-h) i . \\
& \text { so the only real valued } \\
& \text { solution is when } x=h \text {, } \\
& \text { where } y=k \text {. The point }(h, k)
\end{aligned}
$$

4. Prove that the nondegenerate graph of the equation $A x^{2}+C y^{2}+D x+E y+F=0$ is an ellipse if $A C>0$.

$$
\begin{aligned}
& A x^{2}+C y^{2}+D x+E y+F=0 \\
& \text { complete the square in } x \text { and } y \text {. } \\
& A[\underbrace{x^{2}+\frac{D}{A} x+\left(\frac{D}{2 A}\right)^{2}}-\left(\frac{D}{2 A}\right)^{2}]+C[\underbrace{y^{2}+\frac{E}{C} y+\left(\frac{E}{2 C}\right.})^{2}-\left(\frac{E}{2 C}\right)^{2}]=-F \\
& A\left[\left(x+\frac{D}{2 A}\right)^{2}-\left(\frac{D}{2 A}\right)^{2}\right]+C\left[\left(y+\frac{E}{2 C}\right)^{2}-\left(\frac{E}{2 C}\right)^{2}\right]=-F \\
& A\left(x+\frac{D}{2 A}\right)^{2}-\frac{D^{2}}{4 A}+C\left(y+\frac{E}{2 C}\right)^{2}-\frac{E^{2}}{4 C}=-F \quad \rightarrow \text { what we are concerned } \\
& A\left(x+\frac{D}{2 A}\right)^{2}+C\left(y+\frac{E}{2 C}\right)^{2}=\frac{D^{2}}{4 A}+\frac{E^{2}}{4 C}-F \quad \text { factors. Let } W=\frac{D^{2} C+E^{2} A-4 A C F}{4 A^{2} C^{2}} \text {, } \\
& \frac{\left(x+\frac{D}{2 A}\right)^{2}}{C}+\frac{\left(y+\frac{E}{2 C}\right)^{2}}{C}=\frac{D^{2}}{A^{2}}+\frac{E^{2}}{4 A C^{2}}-\frac{F}{A C} \quad \text { then } \quad \frac{\left(x+\frac{D}{2 A}\right)^{2}}{C \cdot W}+\frac{\left(y+\frac{E}{2 C}\right)^{2}}{A \cdot W}=1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\frac{\left(X+\frac{D}{2 A}\right)^{2}}{C}+\frac{\left(y+\frac{E}{2 C}\right)^{2}}{A}= \\
\\
\\
\\
\\
\\
\\
\\
\text { we need this to } 1 \text { (for anellipse. Af } C>0, A>0, W>0 \\
\text { be Also an ellipse if } \\
\quad C<0, A<0, W<0 .
\end{array}
\end{aligned}
$$

5. Determine the perimeter of a triangle with one vertex on the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ and the other two vertices at the foci of the ellipse.

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \text { By definition, } d_{1}+d_{2}=2 a . \\
& \quad \text { (see our derivation, we } \\
& \text { included the } 2 \text { to simplify } \\
& \text { } \begin{array}{l}
y i n g s ~ l a t e r) ~
\end{array} \text { any point } \\
& \text { on ellipse } \\
& F_{1} F_{2}=2 c \text {. } \\
& \text { So Perimeter of triangle is } 2 a+2 c \text {. }
\end{aligned}
$$

