## Geometric Series

Consider the following series: $1+x+x^{2}+x^{3}+\cdots+x^{n-1}$.
We need to figure out a way to write this without the $\cdots$. Here's how:

$$
\begin{aligned}
& s=1+x+x^{2}+x^{3}+\cdots+x^{n-1} \\
& \text { subtract } s \text { times } x \text { from } s: \underline{s x}=\underline{x+x^{2}+x^{3}+\cdots+x^{n-1}+x^{n}} \\
& s-s x=1-0-0-0-\cdots-0-x^{n} \\
& s-s x=1-x^{n}
\end{aligned}
$$

Now solve for $s$ :

$$
s(1-x)=1-x^{n} \Rightarrow s=\frac{1-x^{n}}{1-x}=\frac{x^{n}-1}{x-1}
$$

Therefore, a geometric series has the following sum: $1+x+x^{2}+x^{3}+\cdots+x^{n-1}=\frac{x^{n}-1}{x-1}$.

## Example

$$
\begin{aligned}
\sum_{n=0}^{10}\left(\frac{1}{2}\right)^{n} & =\left(\frac{1}{2}\right)^{0}+\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots+\left(\frac{1}{2}\right)^{10} \\
& =1+\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots+\left(\frac{1}{2}\right)^{11-1} \\
& \text { geometric series with } x=1 / 2 \text { and } n=11 \\
& =\frac{x^{n}-1}{x-1} \\
& =\frac{(1 / 2)^{11}-1}{(1 / 2)-1} \\
& =\frac{2047}{1024}
\end{aligned}
$$

This formula is most useful when the place you stop the sum $n$ is not a number but a parameter, as in the case of The Savings Formula.

