Example (3.11.8) Find the linearization $L(x)$ of the function $f(x)=(x)^{1 / 3}$ at $a=-8$.
The linearization is given by

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

which approximates the function $f(x)$ near $x=a$.
We need the function and derivative evaluated at $a=-8$:

$$
\begin{aligned}
f(x) & =(x)^{1 / 3} \\
f(-8) & =(-8)^{1 / 3} \\
& =-2 \text { (the only real valued result) } \\
f^{\prime}(x) & =\frac{1}{3}(x)^{-2 / 3} \\
f^{\prime}(-8) & =\frac{1}{3}(-8)^{-2 / 3} \\
& =\frac{1}{3}(-2)^{-2} \\
& =\frac{1}{3} \cdot \frac{1}{4} \\
& =\frac{1}{12} \\
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
& =f(-8)+f^{\prime}(-8)(x-(-8)) \\
& =-2+\left(\frac{1}{12}\right)(x+8)
\end{aligned}
$$

Example (3.11.10) Find the linear approximation of the function $g(x)=(1+x)^{1 / 3}$ at $a=0$ and use it to approximate the numbers $(0.95)^{1 / 3}$ and $(1.1)^{1 / 3}$. Illustrate by graphing $g(x)$ and the tangent line.

The linearization is given by

$$
L(x)=g(a)+g^{\prime}(a)(x-a)
$$

which approximates the function $g(x)$ near $x=a$.
We need the function and derivative evaluated at $a=0$:

$$
\begin{aligned}
g(x) & =(1+x)^{1 / 3} \\
g(0) & =(1+0)^{1 / 3} \\
& =1 \\
g^{\prime}(x) & =\frac{1}{3}(1+x)^{-2 / 3}(+1) \text { (chain rule) } \\
& =\frac{1}{3(1+x)^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
g^{\prime}(0) & =\frac{1}{3(1+0)^{2 / 3}} \\
& =\frac{1}{3} \\
L(x) & =g(a)+g^{\prime}(a)(x-a) \\
& =g(0)+g^{\prime}(0)(x-0) \\
& =1+\left(\frac{1}{3}\right)(x) \\
& =\frac{x}{3}+1
\end{aligned}
$$

We can now use the linearization to approximate the two numbers.

$$
\begin{aligned}
(0.95)^{1 / 3} & =(1+(-0.05))^{1 / 3} \\
& =g(-0.05) \\
& \sim L(-0.05) \\
& =\frac{-0.05}{3}+1 \\
& =0.98333
\end{aligned}
$$

So we have $(0.95)^{1 / 3} \sim 0.98333$.

$$
\begin{aligned}
(1.1)^{1 / 3} & =(1+(0.1))^{1 / 3} \\
& =g(0.1) \\
& \sim L(0.1) \\
& =\frac{0.1}{3}+1 \\
& =1.03333
\end{aligned}
$$

So we have $(1.1)^{1 / 3} \sim 1.03333$.
Here is a sketch of the situation:

The blue line is the tangent line $L(x)$, the red line is the function $g(x)$, and the dots are where we evaluated to estimate the two numbers. We are evaluating along the tangent line rather than along the function $g(x)$. We do this because it is easier to compute a numerical value along the tangent line than to compute a cube root directly. The further we move away from the center of the linearization $a=0$, the worse our approximation generally becomes. We see that the approximation near $x=0.1$ is worse than the approximation near $x=-0.5$, since the tangent line is further away from the curve $g(x)$ at $x=0.1$.

Example (3.10.36) Use differentials (or, equivalently, a linear approximation) to estimate the number $\ln 1.07$.

Using differentials would simply change the notation slightly. Let's use the linearization notation.
The linearization is given by $L(x)=f(a)+f^{\prime}(a)(x-a)$ which approximates the function $f(x)$ near $x=a$.
We need to identify what $f(x)$ should be, and what our center should be. We are guided in our choice, because we want to be able to evaluate $f(a)$ and $f^{\prime}(a)$ easily.

An example of a poor choice would be $f(x)=\ln x$ and $a=1.07$, since we would need to evaluate $f(a)=$ $\ln 1.07$, which is what we are trying to avoid!

Instead, think of an easy number to evaluate the logarithm at. For logarithms, the easiest number is 1 , since $\ln 1=0$. Then, we will want x to be a small distance away from this number. This is the essence of the linearization procedure. So the function we want to linearize is $f(x)=\ln (1+x)$, and we will choose a center of $a=0$.

We need the function and derivative evaluated at $a=0$:

$$
\begin{aligned}
f(x) & =\ln (1+x) \\
f(0) & =\ln 1 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+x} \\
f^{\prime}(0) & =\frac{1}{1+0} \\
& =1 \\
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
& =f(0)+f^{\prime}(0)(x-(0)) \\
& =0+1(x) \\
& =x
\end{aligned}
$$

We can now use the linearization to approximate the number.

$$
\begin{aligned}
\ln 1.07 & =\ln (1+0.07) \\
& =f(0.07) \\
& \sim L(0.07) \\
& =0.07
\end{aligned}
$$

Here is a sketch of the situation.

The blue line is the tangent line $L(x)$, the red line is the function $f(x)$, and the dot is where we evaluated to estimate $\ln 1.07$.

We could have chosen a different function and a, and still got the result. Consider the function $f(x)=$ $\ln (1-7 x)$, and we will choose a center of $a=0$.

We need the function and derivative evaluated at $a=0$:

$$
f(x)=\ln (1-7 x)
$$

$$
\begin{aligned}
f(0) & =\ln 1 \\
& =0 \\
f^{\prime}(x) & =\frac{1}{1-7 x}(-7) \\
f^{\prime}(0) & =(-7) \frac{1}{1+0} \\
& =-7 \\
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
& =f(0)+f^{\prime}(0)(x-(0)) \\
& =0-7(x) \\
& =-7 x
\end{aligned}
$$

We can now use this linearization to approximate the number.

$$
\begin{aligned}
\ln 1.07 & =\ln (1-7(-0.01)) \\
& =f(-0.01) \\
& \sim L(-0.01) \\
& =-7(-0.01)=0.07
\end{aligned}
$$

Here is a sketch of this situation.

The blue line is the tangent line $L(x)$, the red line is the function $f(x)$, and the dot is where we evaluated to estimate $\ln 1.07$.

Example (3.11.48) On page 431 of Physics: Calculus, 2d ed, by Eugene Hecht (Pacific Grove, CA: Brooks/Cole, 2000), in the course of deriving the formula $T=2 \pi \sqrt{L / g}$ for the period of a pendulum of length L, the author obtains the equation $a_{T}=-g \sin \theta$ for the tangential acceleration of the bob of the pendulum. He then says "for small angles, the value of θ in radians is very nearly the value of $\sin \theta$; they differ by less than 2% out to about 20°."

Verify the linear approximation at 0 for the sine function, $\sin x \sim x$. Use a graphing device to determine the values of x for which $\sin x$ and x differ by less than 2%. Then verify Hecht's statement by converting from radians to degrees.

Consider the function $f(x)=\sin x$, and we will choose a center of $a=0$.
We need the function and derivative evaluated at $a=0$:

$$
\begin{aligned}
f(x) & =\sin x \\
f(0) & =\sin 0 \\
& =0 \\
f^{\prime}(x) & =\cos x \\
f^{\prime}(0) & =\cos 0 \\
& =1 \\
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
& =f(0)+f^{\prime}(0)(x-(0)) \\
& =0+1(x) \\
& =x
\end{aligned}
$$

So we have shown that $\sin x \sim x$ if $x \sim 0$.

If we want the approximation to be good to 2%, then the difference between the two should be less than 2%. The easiest way to find when this happens is to plot $y=|(\sin x-x) / x|$.

Here is a sketch of this situation.

From the sketch, it looks like they differ by about 2% when $x=0.35$ radians $=360(0.35) /(2 \pi)=20.0535^{\circ}$.

