Related Rates in General

Related rates means related rates of change, and since rates of changes are derivatives, related rates really means related derivatives.

The only way to learn how to solve related rates problems is to practice.
The procedure to solve a related rates problem:

1. Write down the rate which is Given.
2. Write down the rate which is Unknown.
3. Write down your notation and draw a diagram.
4. Find a formula connecting the the quantities you listed in your Notation. There should be no derivatives in this relationship.
(a) If necessary, use geometry to eliminate a variable from your formula.
5. Implicitly differentiate the formula to get rates of change involved. If you end up with more than one unknown rate of change, you might have to eliminate a variable using geometry (as mentioned in the previous step).
6. Solve for the Unknown Rate.
7. Substitute values to determine the Unknown Rate.
8. Write a concluding sentence.

Questions

Example A man starts walking north $4 \mathrm{ft} / \mathrm{s}$ from a point P. Five minutes later a woman starts walking south at $5 \mathrm{ft} / \mathrm{s}$ from a point 500 ft due east of P. At what rate are the people moving apart 15 min after the woman starts walking?

Example The altitude of a triangle is increasing at a rate of $1 \mathrm{~cm} . \mathrm{min}$ while the area of the triangle is increasing at a rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is $100 \mathrm{~cm}^{2}$?

Example Water is leaking out of an inverted conical tank at a rate of $10000 \mathrm{~cm}^{3} / \mathrm{min}$ at the same time that water is being pumped into the tank at a constant rate. The tank has height 6 m and diameter at the top is 4 m . If the water level is rising at a rate of $20 \mathrm{~cm} / \mathrm{min}$ when the height of the water is 2 m , find the rate at which water is being pumped into the tank.

Solutions

Example A man starts walking north $4 \mathrm{ft} / \mathrm{s}$ from a point P. Five minutes later a woman starts walking south at $5 \mathrm{ft} / \mathrm{s}$ from a point 500 ft due east of P. At what rate are the people moving apart 15 min after the woman starts walking?

Here is a diagram of the situation:

The notation I have introduced is:
Distance man is from P is x.
Distance woman is from Q is y.
Distance between them is z.
We are given: The man walks with speed $4 \mathrm{ft} / \mathrm{s}$. This means $\left|\frac{d x}{d t}\right|=4 \mathrm{ft} / \mathrm{s}=240 \mathrm{ft} / \mathrm{min}$.
The woman walks with speed $5 \mathrm{ft} / \mathrm{s}$. This means $\left|\frac{d y}{d t}\right|=5 \mathrm{ft} / \mathrm{s}=300 \mathrm{ft} / \mathrm{min}$.
The distance between P and Q is 500 ft .
The units have been changed to ensure they are consistent, in feet and minutes.
What is unknown is the rate at which the are moving apart, which is the rate of change of the distance between them, $\left|\frac{d z}{d t}\right|$.

To get the relation between x, y, and z we need to use our diagram. It is easier to see the relation if we redraw our diagram, which I already did above. The relation is

$$
(x+y)^{2}+500^{2}=z^{2}
$$

Implicitly differentiate the relation to get a relation between the rates of change. The rates of change are with respect to time t, so we should differentiate with respect to t. The quantities x, y, and z are all functions of t.

$$
\begin{aligned}
& \frac{d}{d t}\left[z^{2}=(x+y)^{2}+500^{2}\right] \\
& 2 z \frac{d z}{d t}=2(x+y)\left(\frac{d x}{d t}+\frac{d y}{d t}\right)
\end{aligned}
$$

We solve this for the unknown rate of change:

$$
\frac{d z}{d t}=\frac{(x+y)}{z}\left(\frac{d x}{d t}+\frac{d y}{d t}\right)
$$

To use this equation, we need to know the quantities x, y, z after the woman has been walking for 15 minutes. Since she started walking 5 minutes after the man, the man will have been walking for 20 minutes.

In 15 minutes, the woman walks $y=15 \mathrm{~min} \cdot 300 \mathrm{ft} / \mathrm{min}=4500 \mathrm{ft}$.
In 20 minutes, the man walks $x=20 \mathrm{~min} \cdot 240 \mathrm{ft} / \mathrm{min}=4800 \mathrm{ft}$.
The distance between them at this time will be $z=\sqrt{(x+y)^{2}+500^{2}}=\sqrt{(4800+4500)^{2}+500^{2}}=100 \sqrt{8674} \mathrm{ft}$.

The rate of change of the distance between them after the woman has been walking 15 minutes is

$$
\frac{d z}{d t}=\frac{(x+y)}{z}\left(\frac{d x}{d t}+\frac{d y}{d t}\right)=\frac{(4800+4500)}{100 \sqrt{8674}}(4+5)=\frac{837}{\sqrt{8674}} \mathrm{ft} / \mathrm{min}
$$

Example The altitude of a triangle is increasing at a rate of $1 \mathrm{~cm} / \mathrm{min}$ while the area of the triangle is increasing at a rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is $100 \mathrm{~cm}^{2}$?

Here is a diagram of the situation:

The notation I have introduced is:
The altitude of the triangle is h.
The base of the triangle is b.
The area of the triangle is A.
We are given:
The altitude is increasing at a rate of $\frac{d h}{d t}=1 \mathrm{~cm} / \mathrm{min}$.
The area is increasing at a rate of $\frac{d A}{d t}=2 \mathrm{~cm}^{2} / \mathrm{min}$.
What is unknown is the rate of change of the base, $\frac{d b}{d t}$.
The relation between the base and altitude of a triangle is

$$
A=\frac{1}{2} b h .
$$

Implicitly differentiate with respect to time:

$$
\frac{d A}{d t}=\frac{1}{2}\left(h \frac{d b}{d t}+b \frac{d h}{d t}\right) .
$$

Solve for the unknown rate of change:

$$
\frac{d b}{d t}=\frac{1}{h}\left(2 \frac{d A}{d t}-b \frac{d h}{d t}\right)
$$

At $h=10 \mathrm{~cm}$ and $A=100 \mathrm{~cm}^{2}, b=2 A / h=2(100) / 10=20 \mathrm{~cm}$.
The rate of change of the base at this time is

$$
\frac{d b}{d t}=\frac{1}{10}(2(2)-(20)(1))=-1.6 \mathrm{~cm} / \mathrm{min}
$$

The negative sign in our answer means the length of the base is decreasing.
Example Water is leaking out of an inverted conical tank at a rate of $10000 \mathrm{~cm}^{3} / \mathrm{min}$ at the same time that water is being pumped into the tank at a constant rate. The tank has height 6 m and diameter at the top is 4 m . If the water level is rising at a rate of $20 \mathrm{~cm} / \mathrm{min}$ when the height of the water is 2 m , find the rate at which water is being pumped into the tank.

Here is a diagram of the situation:

The notation I have introduced is:
The height of water in the tank is $h \mathrm{~m}$.
The radius of water in the tank is $r \mathrm{~m}$.
The rate water is being pumped into the tank is $R \mathrm{~m}^{3} / \mathrm{min}$.
We are given:
Water is leaking out of the tank at a rate of $=10000 \mathrm{~cm}^{3} / \mathrm{min}=10^{4}\left(10^{-2} \mathrm{~m}\right)^{3} / \mathrm{min}==0.01 \mathrm{~m}^{3} / \mathrm{min}$.
The tank has height 6 m and radius at top of 2 m .
What is unknown is the rate water is being pumped in, R.

The volume of water in the tank at a specific time is given by

$$
V=\frac{1}{3} \pi r^{2} h
$$

We can eliminate one of the variables using similar triangles.

$$
\frac{r}{h}=\frac{2}{6} \longrightarrow r=\frac{1}{3} h .
$$

The volume of water in the tank is given by

$$
V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{1}{3} h\right)^{2} h=\frac{1}{27} \pi h^{3} .
$$

This is the volume for a conical tank of the specific dimensions given in this problem.
The rate of change of volume of water in the tank is found by implicitly differentiating:

$$
\frac{d V}{d t}=\frac{1}{9} \pi h^{2} \frac{d h}{d t} \mathrm{~m} / \mathrm{min}
$$

which must equal

$$
R-0.01 \mathrm{~m} / \mathrm{min}
$$

At $h=2 \mathrm{~m}, \frac{d h}{d t}=20 \mathrm{~cm} / \mathrm{min}=0.2 \mathrm{~m} / \mathrm{min}$, and we have

$$
\begin{aligned}
R-0.01 & =\frac{1}{9} \pi h^{2} \frac{d h}{d t} \\
R & =\frac{1}{9} \pi h^{2} \frac{d h}{d t}+0.01 \\
& =\frac{1}{9} \pi(2)^{2}(0.2)+0.01 \\
& =\frac{1}{9} \pi(2)^{2}(0.2)+0.01 \\
& =0.289 \mathrm{~m}^{3} / \mathrm{min}
\end{aligned}
$$

The rate water is being pumped into the tank is $0.289 \mathrm{~m}^{3} / \mathrm{min}$ when the height of the water is 2 m .

