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Examples

Example 1 Find the equation of the tangent line to the parabola y = x2 − x− 4 at the point P (1,−4).

Example 2 Find the derivative of f(x) = x2 − 8x + 9 at x = a.

Example 2a Find an equation of the tangent line to the parabola y = x2 − 8x + 9 at the point (5,−6).

Example 3 The position of a particle is given by the equation of motion s = f(t) = 1/(1 + t), where t is in seconds and
s is in meters. Find the velocity and speed of the particle at t = 2 seconds.

Example 4 Find f ′(a) if f(x) =
√

3x + 1.

Example 5 A particle moves along a straight line with equation of motion s = f(t) = 2t3 − t, where s is measured in
meters and t in seconds. Find the velocity when t = 2.

Example 6 Find an equation of the tangent line to the function y = 5/(x− 2) at the point (1,−5).

Example 7 The position of a particle is given by s(t) =
√

t2 + 1 where s is measured in meters and t is measured in
seconds. What is the instantaneous velocity of the particle when t = 1 second?

Solutions

Example 1 Find the equation of the tangent line to the parabola y = x2 − x− 4 at the point P (1,−4).

Here we have a = 1 and f(x) = x2 − x− 4, so the slope is:

m = lim
x→a

f(x)− f(a)
x− a

= lim
x→1

f(x)− f(1)
x− 1

= lim
x→1

(x2 − x− 4)− (−4)
x− 1

= lim
x→1

x(x− 1)
x− 1

= lim
x→1

(x)

= 1

Use the point slope form of the equation of a line:

y − y1 = m(x− x1)

with m = 1 and (x1, y1) = P = (1,−4) we have the equation for the tangent line:

y − (−4) = 1(x− 1) or y = x− 5

The slope of the tangent line to a curve at a point is sometimes referred to as the slope of the curve at the point. This is
because the tangent line approximates the curve at the point.
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f[x_] = x^2 - x - 4
tangent[x_] = x - 5
Plot[{f[x], tangent[x]}, {x, -5, 5}]
Plot[{f[x], tangent[x]}, {x, 0.5, 1.5}]
Plot[{f[x], tangent[x]}, {x, 0.9, 1.1}]

The slope could also be calculated using the alternate formula:

m = lim
h→0

f(a + h)− f(a)
h

= lim
h→0

(
(a + h)2 − (a + h)− 4

)
−

(
a2 − a− 4

)
h

= lim
h→0

1
h

(a2 + h2 + 2ah− a− h− 4− a2 + a + 4)

= lim
h→0

1
h

(h2 + 2ah− h)

= lim
h→0

h

h
(h + 2a− 1)

= lim
h→0

(h + 2a− 1)

= 2a− 1

Since we are interested in a = 1, the slope at (1,−4) is m = 2(1)− 1 = 1.

Example 2 Find the derivative of f(x) = x2 − 8x + 9 at x = a.

This can be solved using either of the two forms for derivative. The first is in your text:

f(a) = a2 − 8a + 9
f(a + h) = (a + h)2 − 8(a + h) + 9

= a2 + h2 + 2ah− 8a− 8h + 9

f ′(a) = lim
h→0

f(a + h)− f(a)
h

= lim
h→0

a2 + h2 + 2ah− 8a− 8h + 9− a2 + 8a− 9
h

= lim
h→0

1
h

(h2 + 2ah− 8h)

= lim
h→0

(h + 2a− 8) = 2a− 8

The second solution would be:

f(x) = x2 − 8x + 9
f(a) = a2 − 8a + 9

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
x→a

(x2 − 8x + 9)− (a2 − 8a + 9)
x− a

= lim
x→a

x2 − 8x + 9− a2 + 8a− 9
x− a
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= lim
x→a

x2 − 8x− a2 + 8a

x− a

= lim
x→a

x2 − a2 − 8(x− a)
x− a

= lim
x→a

(x + a)(x− a)− 8(x− a)
x− a

= lim
x→a

((x + a)− 8)(x− a)
x− a

= lim
x→a

((x + a)− 8)

= (a + a− 8) = 2a− 8

Example 2a Find an equation of the tangent line to the parabola y = x2 − 8x + 9 at the point (5,−6).

Let f(x) = y. Then, f ′(a) = 2a− 8 is the slope of the tangent line at x = a. Here, a = 5. m = f ′(5) = 2(5)− 8 = 2. The
point-slope equation for a line is

y − y0 = m(x− x0)
y − (−6) = 2(x− 16)

y = 2x− 16

is the equation of the tangent line to f(x) at the point (5,−6).

In Mathematica:

Plot[{x^2 - 8x + 9, 2x-16}, {x, -3, 6}]

Example 3 The position of a particle is given by the equation of motion s = f(t) = 1/(1 + t), where t is in seconds and
s is in meters. Find the velocity and speed of the particle at t = 2 seconds.

I will work in general at t = a, and then substitute a = 2 at the end.

f(a) =
1

1 + a

f(a + h) =
1

1 + a + h

f ′(a) = lim
h→0

f(a + h)− f(a)
h

= lim
h→0

1
1+a+h −

1
1+a

h

= lim
h→0

1
h

(
1

1 + a + h
− 1

1 + a

)
= lim

h→0

1
h

(
1 + a− (1 + a + h)
(1 + a + h)(1 + a)

)
= lim

h→0

(
−1

(1 + a + h)(1 + a)

)
=

−1
(1 + a)(1 + a)

=
−1

(1 + a)2
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After 2 seconds, the velocity is therefore f ′(2) = −1/9 m/s. The speed is the the absolute value of the velocity, so the
speed is |f ′(2)| = 1/9 m/s.

Example 4 Find f ′(a) if f(x) =
√

3x + 1.

f(a) =
√

3x + 1

f(a + h) =
√

3(a + h) + 1
=

√
3a + 3h + 1

f ′(a) = lim
h→0

f(a + h)− f(a)
h

= lim
h→0

√
3a + 3h + 1−

√
3a + 1

h
Direct substitution yields indeterminant quotient

= lim
h→0

√
3a + 3h + 1−

√
3a + 1

h
·
(√

3a + 3h + 1 +
√

3a + 1√
3a + 3h + 1 +

√
3a + 1

)
rationalize the numerator

= lim
h→0

(3a + 3h + 1)− (3a + 1)
h(
√

3a + 3h + 1 +
√

3a + 1)

= lim
h→0

3a + 3h + 1− 3a− 1
h(
√

3a + 3h + 1 +
√

3a + 1)

= lim
h→0

3h

h(
√

3a + 3h + 1 +
√

3a + 1)

= lim
h→0

3√
3a + 3h + 1 +

√
3a + 1

=
3√

3a + 3(0) + 1 +
√

3a + 1
Direct substitution now works

=
3

2
√

3a + 1

Example 5 A particle moves along a straight line with equation of motion s = f(t) = 2t3 − t, where s is measured in
meters and t in seconds. Find the velocity when t = 2.

The velocity is equal to the derivative of the position.

f ′(a) = lim
h→0

f(a + h)− f(a)
h

f(t) = 2t3 − t

f(a) = 2a3 − a

f(a + h) = 2(a + h)3 − (a + h)
= 2(a3 + 3a2h + 3ah2 + h3)− a− h

= 2a3 + 6a2h + 6ah2 + 2h3 − a− h

f ′(a) = lim
h→0

f(a + h)− f(a)
h

= lim
h→0

(2a3 + 6a2h + 6ah2 + 2h3 − a− h)− (2a3 − a)
h

Direct substitution won’t work

= lim
h→0

1
h

[2a3 + 6a2h + 6ah2 + 2h3 − a− h− 2a3 + a]

= lim
h→0

1
h

[6a2h + 6ah2 + 2h3 − h]
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= lim
h→0

1
h

[h(6a2 + 6ah + 2h2 − 1)]

= lim
h→0

(6a2 + 6ah + 2h2 − 1) Direct substitution now works!

= 6a2 + 6a(0) + 2(0)2 − 1
= 6a2 − 1

The velocity when t = 2 s is v(a) = f ′(a) = 6a2 − 1. When t = 2, the velocity is 6(2)2 − 1 = 23 m/s.

Example 6 Find an equation of the tangent line to the function y = 5/(x− 2) at the point (1,−5).

Let f(x) = 5/(x− 2). Then the slope of the tangent at (a, f(a)) is

m = lim
h→0

f(a + h)− f(a)
h

= lim
h→0

5
(a+h)−2 −

5
a−2

h
= lim

h→0

(
5

a+h−2 −
5

a−2

)
h

= lim
h→0

1
h

((
5

a + h− 2

)
·
(

a− 2
a− 2

)
−

(
5

a− 2

)
·
(

a + h− 2
a + h− 2

))
= lim

h→0

1
h

(
5(a− 2)− 5(a + h− 2)

(a− 2)(a + h− 2)

)
= lim

h→0

1
h

(
5a− 10− 5a− 5h + 10)

(a− 2)(a + h− 2)

)
= lim

h→0

1
h

(
−5h

(a− 2)(a + h− 2)

)
= − lim

h→0

h

h

(
5

(a− 2)(a + h− 2)

)
= − lim

h→0

(
5

(a− 2)(a + h− 2)

)
= −

(
5

(a− 2)(a + 0− 2)

)
= − 5

(a− 2)2

We are interested in a = 1, so the slope is m = −5.

Use the point slope form of the equation of a line: y − y1 = m(x− x1).
Therefore, the equation of the tangent line at the point (1,-5) is y − (−5) = −5(x− 1) −→ y = −5x.
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Example 7 The position of a particle is given by s(t) =
√

t2 + 1 where s is measured in meters and t is measured in
seconds. What is the instantaneous velocity of the particle when t = 1 second?

The instantaneous velocity when t = a seconds is given by:

v(a) = lim
h→0

s(a + h)− s(a)
h

= lim
h→0

√
(a + h)2 + 1−

√
a2 + 1

h

= lim
h→0

√
a2 + h2 + 2ah + 1−

√
a2 + 1

h

= lim
h→0

√
a2 + h2 + 2ah + 1−

√
a2 + 1

h
·
√

a2 + h2 + 2ah + 1 +
√

a2 + 1√
a2 + h2 + 2ah + 1 +

√
a2 + 1

= lim
h→0

(a2 + h2 + 2ah + 1)− (a2 + 1)
h(
√

a2 + h2 + 2ah + 1 +
√

a2 + 1)

= lim
h→0

h2 + 2ah

h(
√

a2 + h2 + 2ah + 1 +
√

a2 + 1)

= lim
h→0

h(h + 2a)
h(
√

a2 + h2 + 2ah + 1 +
√

a2 + 1)

= lim
h→0

(h + 2a)
(
√

a2 + h2 + 2ah + 1 +
√

a2 + 1)

=
(0 + 2a)

(
√

a2 + 02 + 2a(0) + 1 +
√

a2 + 1)

=
2a

2
√

a2 + 1
=

a√
a2 + 1

At a = 1 second, v(1) =
1√
2

m/s. The units come from the definition.


