Examples

Example 1 Find the equation of the tangent line to the parabola $y=x^{2}-x-4$ at the point $P(1,-4)$.
Example 2 Find the derivative of $f(x)=x^{2}-8 x+9$ at $x=a$.
Example 2a Find an equation of the tangent line to the parabola $y=x^{2}-8 x+9$ at the point $(5,-6)$.
Example 3 The position of a particle is given by the equation of motion $s=f(t)=1 /(1+t)$, where t is in seconds and s is in meters. Find the velocity and speed of the particle at $t=2$ seconds.

Example 4 Find $f^{\prime}(a)$ if $f(x)=\sqrt{3 x+1}$.

Example 5 A particle moves along a straight line with equation of motion $s=f(t)=2 t^{3}-t$, where s is measured in meters and t in seconds. Find the velocity when $t=2$.

Example 6 Find an equation of the tangent line to the function $y=5 /(x-2)$ at the point $(1,-5)$.
Example 7 The position of a particle is given by $s(t)=\sqrt{t^{2}+1}$ where s is measured in meters and t is measured in seconds. What is the instantaneous velocity of the particle when $t=1$ second?

Solutions

Example 1 Find the equation of the tangent line to the parabola $y=x^{2}-x-4$ at the point $P(1,-4)$.
Here we have $a=1$ and $f(x)=x^{2}-x-4$, so the slope is:

$$
\begin{aligned}
m & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\left(x^{2}-x-4\right)-(-4)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{x(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1}(x) \\
& =1
\end{aligned}
$$

Use the point slope form of the equation of a line:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

with $m=1$ and $\left(x_{1}, y_{1}\right)=P=(1,-4)$ we have the equation for the tangent line:

$$
y-(-4)=1(x-1) \text { or } y=x-5
$$

The slope of the tangent line to a curve at a point is sometimes referred to as the slope of the curve at the point. This is because the tangent line approximates the curve at the point.

```
f[x_] = x^2 - x - 4
tangent[x_] = x - 5
Plot[{f[x], tangent[x]}, {x, -5, 5}]
Plot[{f[x], tangent[x]}, {x, 0.5, 1.5}]
Plot[{f[x], tangent[x]}, {x, 0.9, 1.1}]
```

The slope could also be calculated using the alternate formula:

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left((a+h)^{2}-(a+h)-4\right)-\left(a^{2}-a-4\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(a^{2}+h^{2}+2 a h-a-h-4-a^{2}+a+4\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(h^{2}+2 a h-h\right) \\
& =\lim _{h \rightarrow 0} \frac{h}{h}(h+2 a-1) \\
& =\lim _{h \rightarrow 0}(h+2 a-1) \\
& =2 a-1
\end{aligned}
$$

Since we are interested in $a=1$, the slope at $(1,-4)$ is $m=2(1)-1=1$.
Example 2 Find the derivative of $f(x)=x^{2}-8 x+9$ at $x=a$.
This can be solved using either of the two forms for derivative. The first is in your text:

$$
\begin{aligned}
f(a) & =a^{2}-8 a+9 \\
f(a+h) & =(a+h)^{2}-8(a+h)+9 \\
& =a^{2}+h^{2}+2 a h-8 a-8 h+9 \\
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{2}+h^{2}+2 a h-8 a-8 h+9-a^{2}+8 a-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(h^{2}+2 a h-8 h\right) \\
& =\lim _{h \rightarrow 0}(h+2 a-8)=2 a-8
\end{aligned}
$$

The second solution would be:

$$
\begin{aligned}
f(x) & =x^{2}-8 x+9 \\
f(a) & =a^{2}-8 a+9 \\
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\left(x^{2}-8 x+9\right)-\left(a^{2}-8 a+9\right)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x^{2}-8 x+9-a^{2}+8 a-9}{x-a}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow a} \frac{x^{2}-8 x-a^{2}+8 a}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x^{2}-a^{2}-8(x-a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x+a)(x-a)-8(x-a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{((x+a)-8)(x-a)}{x-a} \\
& =\lim _{x \rightarrow a}((x+a)-8) \\
& =(a+a-8)=2 a-8
\end{aligned}
$$

Example 2a Find an equation of the tangent line to the parabola $y=x^{2}-8 x+9$ at the point $(5,-6)$.
Let $f(x)=y$. Then, $f^{\prime}(a)=2 a-8$ is the slope of the tangent line at $x=a$. Here, $a=5 . m=f^{\prime}(5)=2(5)-8=2$. The point-slope equation for a line is

$$
\begin{aligned}
y-y_{0} & =m\left(x-x_{0}\right) \\
y-(-6) & =2(x-16) \\
y & =2 x-16
\end{aligned}
$$

is the equation of the tangent line to $f(x)$ at the point $(5,-6)$.
In Mathematica:

Plot $\left[\left\{x^{\wedge} 2-8 x+9,2 x-16\right\},\{x,-3,6\}\right]$

Example 3 The position of a particle is given by the equation of motion $s=f(t)=1 /(1+t)$, where t is in seconds and s is in meters. Find the velocity and speed of the particle at $t=2$ seconds.

I will work in general at $t=a$, and then substitute $a=2$ at the end.

$$
\begin{aligned}
f(a) & =\frac{1}{1+a} \\
f(a+h) & =\frac{1}{1+a+h} \\
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{1+a+h}-\frac{1}{1+a}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{1+a+h}-\frac{1}{1+a}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1+a-(1+a+h)}{(1+a+h)(1+a)}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{-1}{(1+a+h)(1+a)}\right) \\
& =\frac{-1}{(1+a)(1+a)}=\frac{-1}{(1+a)^{2}}
\end{aligned}
$$

After 2 seconds, the velocity is therefore $f^{\prime}(2)=-1 / 9 \mathrm{~m} / \mathrm{s}$. The speed is the the absolute value of the velocity, so the speed is $\left|f^{\prime}(2)\right|=1 / 9 \mathrm{~m} / \mathrm{s}$.

Example 4 Find $f^{\prime}(a)$ if $f(x)=\sqrt{3 x+1}$.

$$
\begin{aligned}
f(a) & =\sqrt{3 x+1} \\
f(a+h) & =\sqrt{3(a+h)+1} \\
& =\sqrt{3 a+3 h+1} \\
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3 a+3 h+1}-\sqrt{3 a+1}}{h} \quad \text { Direct substitution yields indeterminant quotient } \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3 a+3 h+1}-\sqrt{3 a+1}}{h} \cdot\left(\frac{\sqrt{3 a+3 h+1}+\sqrt{3 a+1}}{\sqrt{3 a+3 h+1}+\sqrt{3 a+1}}\right) \quad \text { rationalize the numerator } \\
& =\lim _{h \rightarrow 0} \frac{(3 a+3 h+1)-(3 a+1)}{h(\sqrt{3 a+3 h+1}+\sqrt{3 a+1})} \\
& =\lim _{h \rightarrow 0} \frac{3 a+3 h+1-3 a-1}{h(\sqrt{3 a+3 h+1}+\sqrt{3 a+1})} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h(\sqrt{3 a+3 h+1}+\sqrt{3 a+1})} \\
& =\lim _{h \rightarrow 0} \frac{3}{\sqrt{3 a+3 h+1}+\sqrt{3 a+1}} \\
& =\frac{3}{\sqrt{3 a+3(0)+1}+\sqrt{3 a+1}} \quad \text { Direct substitution now works } \\
& =\frac{3}{2 \sqrt{3 a+1}}
\end{aligned}
$$

Example 5 A particle moves along a straight line with equation of motion $s=f(t)=2 t^{3}-t$, where s is measured in meters and t in seconds. Find the velocity when $t=2$.

The velocity is equal to the derivative of the position.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
f(t) & =2 t^{3}-t \\
f(a) & =2 a^{3}-a \\
f(a+h) & =2(a+h)^{3}-(a+h) \\
& =2\left(a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)-a-h \\
& =2 a^{3}+6 a^{2} h+6 a h^{2}+2 h^{3}-a-h \\
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(2 a^{3}+6 a^{2} h+6 a h^{2}+2 h^{3}-a-h\right)-\left(2 a^{3}-a\right)}{h} \quad \text { Direct substitution won't work } \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 a^{3}+6 a^{2} h+6 a h^{2}+2 h^{3}-a-h-2 a^{3}+a\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[6 a^{2} h+6 a h^{2}+2 h^{3}-h\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[h\left(6 a^{2}+6 a h+2 h^{2}-1\right)\right] \\
& =\lim _{h \rightarrow 0}\left(6 a^{2}+6 a h+2 h^{2}-1\right) \quad \text { Direct substitution now works! } \\
& =6 a^{2}+6 a(0)+2(0)^{2}-1 \\
& =6 a^{2}-1
\end{aligned}
$$

The velocity when $t=2 \mathrm{~s}$ is $v(a)=f^{\prime}(a)=6 a^{2}-1$. When $t=2$, the velocity is $6(2)^{2}-1=23 \mathrm{~m} / \mathrm{s}$.
Example 6 Find an equation of the tangent line to the function $y=5 /(x-2)$ at the point $(1,-5)$.
Let $f(x)=5 /(x-2)$. Then the slope of the tangent at $(a, f(a))$ is

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{5}{(a+h)-2}-\frac{5}{a-2}}{h}=\lim _{h \rightarrow 0} \frac{\left(\frac{5}{a+h-2}-\frac{5}{a-2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\left(\frac{5}{a+h-2}\right) \cdot\left(\frac{a-2}{a-2}\right)-\left(\frac{5}{a-2}\right) \cdot\left(\frac{a+h-2}{a+h-2}\right)\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{5(a-2)-5(a+h-2)}{(a-2)(a+h-2)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{5 a-10-5 a-5 h+10)}{(a-2)(a+h-2)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-5 h}{(a-2)(a+h-2)}\right) \\
& =-\lim _{h \rightarrow 0} \frac{h}{h}\left(\frac{5}{(a-2)(a+h-2)}\right) \\
& =-\lim _{h \rightarrow 0}\left(\frac{5}{(a-2)(a+h-2)}\right) \\
& =-\left(\frac{5}{(a-2)(a+0-2)}\right) \\
& =-\frac{5}{(a-2)^{2}}
\end{aligned}
$$

We are interested in $a=1$, so the slope is $m=-5$.
Use the point slope form of the equation of a line: $y-y_{1}=m\left(x-x_{1}\right)$.
Therefore, the equation of the tangent line at the point $(1,-5)$ is $y-(-5)=-5(x-1) \longrightarrow y=-5 x$.

Example 7 The position of a particle is given by $s(t)=\sqrt{t^{2}+1}$ where s is measured in meters and t is measured in seconds. What is the instantaneous velocity of the particle when $t=1$ second?

The instantaneous velocity when $t=a$ seconds is given by:

$$
\begin{aligned}
v(a) & =\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{(a+h)^{2}+1}-\sqrt{a^{2}+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{a^{2}+h^{2}+2 a h+1}-\sqrt{a^{2}+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{a^{2}+h^{2}+2 a h+1}-\sqrt{a^{2}+1}}{h} \cdot \frac{\sqrt{a^{2}+h^{2}+2 a h+1}+\sqrt{a^{2}+1}}{\sqrt{a^{2}+h^{2}+2 a h+1}+\sqrt{a^{2}+1}} \\
& =\lim _{h \rightarrow 0} \frac{\left(a^{2}+h^{2}+2 a h+1\right)-\left(a^{2}+1\right)}{h\left(\sqrt{a^{2}+h^{2}+2 a h+1}+\sqrt{a^{2}+1}\right)} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+2 a h}{h\left(\sqrt{a^{2}+h^{2}+2 a h+1}+\sqrt{a^{2}+1}\right)} \\
& =\lim _{h \rightarrow 0} \frac{h(h+2 a)}{h\left(\sqrt{a^{2}+h^{2}+2 a h+1}+\sqrt{a^{2}+1}\right)} \\
& =\lim _{h \rightarrow 0} \frac{(h+2 a)}{\left(\sqrt{a^{2}+h^{2}+2 a h+1}+\sqrt{a^{2}+1}\right)} \\
& =\frac{(0+2 a)}{\left(\sqrt{a^{2}+0^{2}+2 a(0)+1}+\sqrt{a^{2}+1}\right)} \\
& =\frac{2 a}{2 \sqrt{a^{2}+1}=\frac{a}{\sqrt{a^{2}+1}}}
\end{aligned}
$$

At $a=1$ second, $v(1)=\frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$. The units come from the definition.

